Spaces:
Sleeping
Sleeping
import numpy as np | |
from rlkit.envs.mujoco_env import MujocoEnv | |
class AntEnv(MujocoEnv): | |
def __init__(self, use_low_gear_ratio=True): | |
self.init_serialization(locals()) | |
if use_low_gear_ratio: | |
xml_path = 'low_gear_ratio_ant.xml' | |
else: | |
xml_path = 'normal_gear_ratio_ant.xml' | |
super().__init__( | |
xml_path, | |
frame_skip=5, | |
automatically_set_obs_and_action_space=True, | |
) | |
def step(self, a): | |
torso_xyz_before = self.get_body_com("torso") | |
self.do_simulation(a, self.frame_skip) | |
torso_xyz_after = self.get_body_com("torso") | |
torso_velocity = torso_xyz_after - torso_xyz_before | |
forward_reward = torso_velocity[0]/self.dt | |
ctrl_cost = .5 * np.square(a).sum() | |
contact_cost = 0.5 * 1e-3 * np.sum( | |
np.square(np.clip(self.sim.data.cfrc_ext, -1, 1))) | |
survive_reward = 1.0 | |
reward = forward_reward - ctrl_cost - contact_cost + survive_reward | |
state = self.state_vector() | |
notdone = np.isfinite(state).all() \ | |
and state[2] >= 0.2 and state[2] <= 1.0 | |
done = not notdone | |
ob = self._get_obs() | |
return ob, reward, done, dict( | |
reward_forward=forward_reward, | |
reward_ctrl=-ctrl_cost, | |
reward_contact=-contact_cost, | |
reward_survive=survive_reward, | |
torso_velocity=torso_velocity, | |
) | |
def _get_obs(self): | |
return np.concatenate([ | |
self.sim.data.qpos.flat[2:], | |
self.sim.data.qvel.flat, | |
]) | |
def reset_model(self): | |
qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-.1, high=.1) | |
qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1 | |
self.set_state(qpos, qvel) | |
return self._get_obs() | |
def viewer_setup(self): | |
self.viewer.cam.distance = self.model.stat.extent * 0.5 | |