NCERL-Diverse-PCG / src /rlkit /exploration_strategies /gaussian_and_epsilon_strategy.py
baiyanlali-zhao's picture
init
eaf2e33
raw
history blame
1.24 kB
import random
from rlkit.exploration_strategies.base import RawExplorationStrategy
import numpy as np
class GaussianAndEpislonStrategy(RawExplorationStrategy):
"""
With probability epsilon, take a completely random action.
with probability 1-epsilon, add Gaussian noise to the action taken by a
deterministic policy.
"""
def __init__(self, action_space, epsilon, max_sigma=1.0, min_sigma=None,
decay_period=1000000):
assert len(action_space.shape) == 1
if min_sigma is None:
min_sigma = max_sigma
self._max_sigma = max_sigma
self._epsilon = epsilon
self._min_sigma = min_sigma
self._decay_period = decay_period
self._action_space = action_space
def get_action_from_raw_action(self, action, t=None, **kwargs):
if random.random() < self._epsilon:
return self._action_space.sample()
else:
sigma = self._max_sigma - (self._max_sigma - self._min_sigma) * min(1.0, t * 1.0 / self._decay_period)
return np.clip(
action + np.random.normal(size=len(action)) * sigma,
self._action_space.low,
self._action_space.high,
)