baiyanlali-zhao's picture
init
eaf2e33
raw
history blame
957 Bytes
import torch
from src.smb.level import MarioLevel
from src.gan.gans import nz
from src.utils.filesys import getpath
def sample_latvec(n=1, device='cpu', distribuion='uniform'):
if distribuion == 'uniform':
return torch.rand(n, nz, 1, 1, device=device) * 2 - 1
elif distribuion == 'normal':
return torch.randn(n, nz, 1, 1, device=device)
else:
raise TypeError(f'unknow noise distribution: {distribuion}')
def process_onehot(raw_tensor_onehot):
H, W = MarioLevel.height, MarioLevel.seg_width
res = []
for single in raw_tensor_onehot:
data = single[:, :H, :W].detach().cpu().numpy()
lvl = MarioLevel.from_one_hot_arr(data)
res.append(lvl)
return res if len(res) > 1 else res[0]
def get_decoder(path='models/decoder.pth', device='cpu'):
decoder = torch.load(getpath(path), map_location=device)
decoder.requires_grad_(False)
decoder.eval()
return decoder
pass