import numpy as np from rlkit.envs.mujoco_env import MujocoEnv class AntEnv(MujocoEnv): def __init__(self, use_low_gear_ratio=True): self.init_serialization(locals()) if use_low_gear_ratio: xml_path = 'low_gear_ratio_ant.xml' else: xml_path = 'normal_gear_ratio_ant.xml' super().__init__( xml_path, frame_skip=5, automatically_set_obs_and_action_space=True, ) def step(self, a): torso_xyz_before = self.get_body_com("torso") self.do_simulation(a, self.frame_skip) torso_xyz_after = self.get_body_com("torso") torso_velocity = torso_xyz_after - torso_xyz_before forward_reward = torso_velocity[0]/self.dt ctrl_cost = .5 * np.square(a).sum() contact_cost = 0.5 * 1e-3 * np.sum( np.square(np.clip(self.sim.data.cfrc_ext, -1, 1))) survive_reward = 1.0 reward = forward_reward - ctrl_cost - contact_cost + survive_reward state = self.state_vector() notdone = np.isfinite(state).all() \ and state[2] >= 0.2 and state[2] <= 1.0 done = not notdone ob = self._get_obs() return ob, reward, done, dict( reward_forward=forward_reward, reward_ctrl=-ctrl_cost, reward_contact=-contact_cost, reward_survive=survive_reward, torso_velocity=torso_velocity, ) def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat[2:], self.sim.data.qvel.flat, ]) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-.1, high=.1) qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1 self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): self.viewer.cam.distance = self.model.stat.extent * 0.5