|
|
|
from fastapi import FastAPI,HTTPException |
|
from pydantic import BaseModel |
|
import torch |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
StoppingCriteria, |
|
StoppingCriteriaList, |
|
TextIteratorStreamer |
|
) |
|
from typing import List, Tuple |
|
from threading import Thread |
|
import os |
|
from pydantic import BaseModel |
|
import logging |
|
import uvicorn |
|
|
|
|
|
|
|
os.environ['TRANSFORMERS_CACHE'] = '/app/.cache' |
|
os.environ['HF_HOME'] = '/app/.cache' |
|
|
|
model = AutoModelForCausalLM.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True) |
|
|
|
|
|
|
|
|
|
Informations = """ |
|
-text : Texte à resumé |
|
|
|
output: |
|
- Text summary : texte resumé |
|
""" |
|
|
|
app =FastAPI( |
|
title='Text Summary', |
|
description =Informations |
|
) |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger =logging.getLogger(__name__) |
|
|
|
@app.get("/") |
|
async def home(): |
|
return 'STN BIG DATA' |
|
|
|
|
|
model_name = "THUDM/longwriter-glm4-9b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="auto") |
|
|
|
|
|
default_prompt = """Vous êtes un assistant expert en résumé de plaintes. Votre tâche est de résumer la plainte fournie de manière concise et professionnelle, en incluant les points clés suivants : |
|
|
|
1. Le problème principal |
|
2. Les détails pertinents |
|
3. L'impact sur le plaignant |
|
4. Toute action ou résolution demandée |
|
|
|
Résumez la plainte suivante en 3-4 phrases : |
|
|
|
""" |
|
|
|
class ComplaintInput(BaseModel): |
|
text: str |
|
|
|
@app.post("/summarize_complaint") |
|
async def summarize_complaint(input: ComplaintInput): |
|
try: |
|
full_prompt = default_prompt + input.text |
|
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=150, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
temperature=0.7 |
|
) |
|
|
|
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
summary = summary.replace(full_prompt, "").strip() |
|
return {"summary": summary} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run("app:app",reload=True) |