fixe
Browse files
app.py
CHANGED
@@ -63,18 +63,18 @@ async def predict(request: PredictionRequest):
|
|
63 |
else:
|
64 |
prompt = default_prompt
|
65 |
|
66 |
-
#
|
67 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
68 |
attention_mask = inputs.attention_mask.to(model.device)
|
|
|
|
|
69 |
outputs = model.generate(
|
70 |
-
|
71 |
attention_mask=attention_mask,
|
72 |
max_length=3000,
|
73 |
do_sample=True
|
74 |
)
|
75 |
-
# generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
76 |
-
# outputs = model.generate(inputs, max_length=3000, do_sample=True)
|
77 |
-
|
78 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
|
80 |
return {"generated_text": generated_text}
|
|
|
63 |
else:
|
64 |
prompt = default_prompt
|
65 |
|
66 |
+
# Tokenize l'entrée et créez un attention mask
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
68 |
+
input_ids = inputs.input_ids.to(model.device)
|
69 |
attention_mask = inputs.attention_mask.to(model.device)
|
70 |
+
|
71 |
+
# Générez le texte en passant l'attention mask
|
72 |
outputs = model.generate(
|
73 |
+
input_ids,
|
74 |
attention_mask=attention_mask,
|
75 |
max_length=3000,
|
76 |
do_sample=True
|
77 |
)
|
|
|
|
|
|
|
78 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
|
80 |
return {"generated_text": generated_text}
|