Spaces:
Running
on
T4
Running
on
T4
""" | |
utils.py | |
This module contains utility functions for: | |
- Loading and processing images | |
- Object detection with YOLO | |
- OCR with EasyOCR / PaddleOCR | |
- Image annotation and bounding box manipulation | |
- Captioning / semantic parsing of detected icons | |
""" | |
import os | |
import io | |
import base64 | |
import time | |
import json | |
import sys | |
import re | |
from typing import Tuple, List | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image, ImageDraw, ImageFont | |
from matplotlib import pyplot as plt | |
import easyocr | |
from paddleocr import PaddleOCR | |
import supervision as sv | |
import torchvision.transforms as T | |
from torchvision.transforms import ToPILImage | |
from torchvision.ops import box_convert | |
# Optional: import AzureOpenAI if used | |
from openai import AzureOpenAI | |
# Initialize OCR readers | |
reader = easyocr.Reader(['en']) | |
paddle_ocr = PaddleOCR( | |
lang='en', # other languages available | |
use_angle_cls=False, | |
use_gpu=False, # using cuda might conflict with PyTorch in the same process | |
show_log=False, | |
max_batch_size=1024, | |
use_dilation=True, # improves accuracy | |
det_db_score_mode='slow', # improves accuracy | |
rec_batch_num=1024 | |
) | |
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None): | |
""" | |
Loads the captioning model and processor. | |
Supports either BLIP2 or Florence-2 models. | |
""" | |
if not device: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if model_name == "blip2": | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration | |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
if device == 'cpu': | |
model = Blip2ForConditionalGeneration.from_pretrained( | |
model_name_or_path, device_map=None, torch_dtype=torch.float32 | |
) | |
else: | |
model = Blip2ForConditionalGeneration.from_pretrained( | |
model_name_or_path, device_map=None, torch_dtype=torch.float16 | |
).to(device) | |
elif model_name == "florence2": | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) | |
if device == 'cpu': | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True | |
) | |
else: | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True | |
).to(device) | |
return {'model': model.to(device), 'processor': processor} | |
def get_yolo_model(model_path): | |
""" | |
Loads a YOLO model from a given model_path using ultralytics. | |
""" | |
from ultralytics import YOLO | |
model = YOLO(model_path) | |
return model | |
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=32): | |
# Ensure batch_size is an integer | |
if batch_size is None: | |
batch_size = 32 | |
to_pil = ToPILImage() | |
if starting_idx: | |
non_ocr_boxes = filtered_boxes[starting_idx:] | |
else: | |
non_ocr_boxes = filtered_boxes | |
cropped_pil_images = [] | |
for coord in non_ocr_boxes: | |
xmin, xmax = int(coord[0] * image_source.shape[1]), int(coord[2] * image_source.shape[1]) | |
ymin, ymax = int(coord[1] * image_source.shape[0]), int(coord[3] * image_source.shape[0]) | |
cropped_image = image_source[ymin:ymax, xmin:xmax, :] | |
cropped_pil_images.append(to_pil(cropped_image)) | |
model, processor = caption_model_processor['model'], caption_model_processor['processor'] | |
if not prompt: | |
if 'florence' in model.config.name_or_path: | |
prompt = "<CAPTION>" | |
else: | |
prompt = "The image shows" | |
generated_texts = [] | |
device = model.device | |
for i in range(0, len(cropped_pil_images), batch_size): | |
batch = cropped_pil_images[i:i + batch_size] | |
if model.device.type == 'cuda': | |
inputs = processor(images=batch, text=[prompt] * len(batch), return_tensors="pt").to(device=device, dtype=torch.float16) | |
else: | |
inputs = processor(images=batch, text=[prompt] * len(batch), return_tensors="pt").to(device=device) | |
if 'florence' in model.config.name_or_path: | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=100, | |
num_beams=3, | |
do_sample=False | |
) | |
else: | |
generated_ids = model.generate( | |
**inputs, | |
max_length=100, | |
num_beams=5, | |
no_repeat_ngram_size=2, | |
early_stopping=True, | |
num_return_sequences=1 | |
) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
generated_text = [gen.strip() for gen in generated_text] | |
generated_texts.extend(generated_text) | |
return generated_texts | |
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor): | |
""" | |
Generates parsed textual content for detected icons using the phi3_v model variant. | |
""" | |
to_pil = ToPILImage() | |
if ocr_bbox: | |
non_ocr_boxes = filtered_boxes[len(ocr_bbox):] | |
else: | |
non_ocr_boxes = filtered_boxes | |
cropped_pil_images = [] | |
for coord in non_ocr_boxes: | |
xmin, xmax = int(coord[0] * image_source.shape[1]), int(coord[2] * image_source.shape[1]) | |
ymin, ymax = int(coord[1] * image_source.shape[0]), int(coord[3] * image_source.shape[0]) | |
cropped_image = image_source[ymin:ymax, xmin:xmax, :] | |
cropped_pil_images.append(to_pil(cropped_image)) | |
model, processor = caption_model_processor['model'], caption_model_processor['processor'] | |
device = model.device | |
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}] | |
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
batch_size = 5 # Number of samples per batch | |
generated_texts = [] | |
for i in range(0, len(cropped_pil_images), batch_size): | |
images = cropped_pil_images[i:i+batch_size] | |
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images] | |
inputs = {'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []} | |
texts = [prompt] * len(images) | |
for idx, txt in enumerate(texts): | |
inp = processor._convert_images_texts_to_inputs(image_inputs[idx], txt, return_tensors="pt") | |
inputs['input_ids'].append(inp['input_ids']) | |
inputs['attention_mask'].append(inp['attention_mask']) | |
inputs['pixel_values'].append(inp['pixel_values']) | |
inputs['image_sizes'].append(inp['image_sizes']) | |
max_len = max(x.shape[1] for x in inputs['input_ids']) | |
for idx, v in enumerate(inputs['input_ids']): | |
pad_tensor = processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long) | |
inputs['input_ids'][idx] = torch.cat([pad_tensor, v], dim=1) | |
pad_att = torch.zeros(1, max_len - v.shape[1], dtype=torch.long) | |
inputs['attention_mask'][idx] = torch.cat([pad_att, inputs['attention_mask'][idx]], dim=1) | |
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()} | |
generation_args = { | |
"max_new_tokens": 25, | |
"temperature": 0.01, | |
"do_sample": False, | |
} | |
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) | |
# Remove input tokens from the generated sequence | |
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
response = [res.strip('\n').strip() for res in response] | |
generated_texts.extend(response) | |
return generated_texts | |
def remove_overlap(boxes, iou_threshold, ocr_bbox=None): | |
""" | |
Removes overlapping bounding boxes based on IoU and optionally considers OCR boxes. | |
Args: | |
boxes: Tensor of bounding boxes (in xyxy format). | |
iou_threshold: IoU threshold to determine overlaps. | |
ocr_bbox: Optional list of OCR bounding boxes. | |
Returns: | |
Filtered boxes as a torch.Tensor. | |
""" | |
assert ocr_bbox is None or isinstance(ocr_bbox, List) | |
def box_area(box): | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
def intersection_area(box1, box2): | |
x1 = max(box1[0], box2[0]) | |
y1 = max(box1[1], box2[1]) | |
x2 = min(box1[2], box2[2]) | |
y2 = min(box1[3], box2[3]) | |
return max(0, x2 - x1) * max(0, y2 - y1) | |
def IoU(box1, box2): | |
inter = intersection_area(box1, box2) | |
union = box_area(box1) + box_area(box2) - inter + 1e-6 | |
ratio1 = inter / box_area(box1) if box_area(box1) > 0 else 0 | |
ratio2 = inter / box_area(box2) if box_area(box2) > 0 else 0 | |
return max(inter / union, ratio1, ratio2) | |
def is_inside(box1, box2): | |
inter = intersection_area(box1, box2) | |
return (inter / box_area(box1)) > 0.95 | |
boxes = boxes.tolist() | |
filtered_boxes = [] | |
if ocr_bbox: | |
filtered_boxes.extend(ocr_bbox) | |
for i, box1 in enumerate(boxes): | |
is_valid_box = True | |
for j, box2 in enumerate(boxes): | |
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): | |
is_valid_box = False | |
break | |
if is_valid_box: | |
if ocr_bbox: | |
# Only add the box if it does not overlap with any OCR box | |
if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for box3 in ocr_bbox): | |
filtered_boxes.append(box1) | |
else: | |
filtered_boxes.append(box1) | |
return torch.tensor(filtered_boxes) | |
def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None): | |
""" | |
Removes overlapping boxes with OCR priority. | |
Args: | |
boxes: List of dictionaries, each with keys: 'type', 'bbox', 'interactivity', 'content'. | |
iou_threshold: IoU threshold for removal. | |
ocr_bbox: List of OCR box dictionaries. | |
Returns: | |
A list of filtered box dictionaries. | |
""" | |
assert ocr_bbox is None or isinstance(ocr_bbox, List) | |
def box_area(box): | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
def intersection_area(box1, box2): | |
x1 = max(box1[0], box2[0]) | |
y1 = max(box1[1], box2[1]) | |
x2 = min(box1[2], box2[2]) | |
y2 = min(box1[3], box2[3]) | |
return max(0, x2 - x1) * max(0, y2 - y1) | |
def IoU(box1, box2): | |
inter = intersection_area(box1, box2) | |
union = box_area(box1) + box_area(box2) - inter + 1e-6 | |
ratio1 = inter / box_area(box1) if box_area(box1) > 0 else 0 | |
ratio2 = inter / box_area(box2) if box_area(box2) > 0 else 0 | |
return max(inter / union, ratio1, ratio2) | |
def is_inside(box1, box2): | |
inter = intersection_area(box1, box2) | |
return (inter / box_area(box1)) > 0.80 | |
filtered_boxes = [] | |
if ocr_bbox: | |
filtered_boxes.extend(ocr_bbox) | |
for i, box1_elem in enumerate(boxes): | |
box1 = box1_elem['bbox'] | |
is_valid_box = True | |
for j, box2_elem in enumerate(boxes): | |
box2 = box2_elem['bbox'] | |
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): | |
is_valid_box = False | |
break | |
if is_valid_box: | |
if ocr_bbox: | |
box_added = False | |
for box3_elem in ocr_bbox: | |
box3 = box3_elem['bbox'] | |
if is_inside(box3, box1): | |
try: | |
filtered_boxes.append({ | |
'type': 'text', | |
'bbox': box1_elem['bbox'], | |
'interactivity': True, | |
'content': box3_elem['content'] | |
}) | |
filtered_boxes.remove(box3_elem) | |
except Exception: | |
continue | |
elif is_inside(box1, box3): | |
box_added = True | |
break | |
if not box_added: | |
filtered_boxes.append({ | |
'type': 'icon', | |
'bbox': box1_elem['bbox'], | |
'interactivity': True, | |
'content': None | |
}) | |
else: | |
filtered_boxes.append(box1) | |
return filtered_boxes # Optionally, you could return torch.tensor(filtered_boxes) if needed | |
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: | |
""" | |
Loads an image and applies transformations. | |
Returns: | |
image: Original image as a NumPy array. | |
image_transformed: Transformed tensor. | |
""" | |
transform = T.Compose([ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
image_source = Image.open(image_path).convert("RGB") | |
image = np.asarray(image_source) | |
image_transformed, _ = transform(image_source, None) | |
return image, image_transformed | |
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], | |
text_scale: float, text_padding=5, text_thickness=2, thickness=3) -> Tuple[np.ndarray, dict]: | |
""" | |
Annotates an image with bounding boxes and labels. | |
""" | |
# Validate phrases input | |
phrases = [str(phrase) if not isinstance(phrase, str) else phrase for phrase in phrases] | |
h, w, _ = image_source.shape | |
boxes = boxes * torch.Tensor([w, h, w, h]) | |
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() | |
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy() | |
detections = sv.Detections(xyxy=xyxy) | |
labels = [f"{phrase}" for phrase in phrases] | |
from util.box_annotator import BoxAnnotator | |
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding, | |
text_thickness=text_thickness, thickness=thickness) | |
annotated_frame = image_source.copy() | |
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w, h)) | |
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)} | |
return annotated_frame, label_coordinates | |
def predict(model, image, caption, box_threshold, text_threshold): | |
""" | |
Uses a Hugging Face model to perform grounded object detection. | |
Args: | |
model: Dictionary with 'model' and 'processor'. | |
image: Input PIL image. | |
caption: Caption text. | |
box_threshold: Confidence threshold for boxes. | |
text_threshold: Threshold for text detection. | |
Returns: | |
boxes, logits, phrases from the detection. | |
""" | |
model_obj, processor = model['model'], model['processor'] | |
device = model_obj.device | |
inputs = processor(images=image, text=caption, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model_obj(**inputs) | |
results = processor.post_process_grounded_object_detection( | |
outputs, | |
inputs.input_ids, | |
box_threshold=box_threshold, | |
text_threshold=text_threshold, | |
target_sizes=[image.size[::-1]] | |
)[0] | |
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"] | |
return boxes, logits, phrases | |
def predict_yolo(model, image_path, box_threshold, imgsz, scale_img, iou_threshold=0.7): | |
""" | |
Uses a YOLO model for object detection. | |
Args: | |
model: YOLO model instance. | |
image_path: Path to the image. | |
box_threshold: Confidence threshold. | |
imgsz: Image size for scaling (if scale_img is True). | |
scale_img: Boolean flag to scale the image. | |
iou_threshold: IoU threshold for non-max suppression. | |
Returns: | |
Bounding boxes, confidence scores, and placeholder phrases. | |
""" | |
kwargs = { | |
'conf': box_threshold, # Confidence threshold | |
'iou': iou_threshold, # IoU threshold | |
'verbose': False | |
} | |
if scale_img: | |
kwargs['imgsz'] = imgsz | |
results = model.predict(image_path, **kwargs) | |
boxes = results[0].boxes.xyxy | |
conf = results[0].boxes.conf | |
return boxes, conf, [str(i) for i in range(len(boxes))] | |
def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, | |
text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, | |
ocr_text=[], use_local_semantics=True, iou_threshold=0.9, prompt=None, scale_img=False, | |
imgsz=None, batch_size=None): | |
""" | |
Processes an image to generate semantic (SOM) labels. | |
Args: | |
img_path: Path to the image. | |
model: YOLO model for detection. | |
BOX_TRESHOLD: Confidence threshold for box prediction. | |
output_coord_in_ratio: If True, output coordinates in ratio. | |
ocr_bbox: OCR bounding boxes. | |
text_scale, text_padding: Parameters for drawing annotations. | |
draw_bbox_config: Custom configuration for bounding box drawing. | |
caption_model_processor: Dictionary with caption model and processor. | |
ocr_text: List of OCR-detected texts. | |
use_local_semantics: Whether to use local semantic processing. | |
iou_threshold: IoU threshold for filtering overlaps. | |
prompt: Optional caption prompt. | |
scale_img: Whether to scale the image. | |
imgsz: Image size for YOLO. | |
batch_size: Batch size for captioning. | |
Returns: | |
Encoded annotated image, label coordinates, and filtered boxes. | |
""" | |
image_source = Image.open(img_path).convert("RGB") | |
w, h = image_source.size | |
if not imgsz: | |
imgsz = (h, w) | |
# Run YOLO detection | |
xyxy, logits, phrases = predict_yolo( | |
model=model, image_path=img_path, box_threshold=BOX_TRESHOLD, | |
imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1 | |
) | |
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device) | |
image_source_np = np.asarray(image_source) | |
phrases = [str(i) for i in range(len(phrases))] | |
# Process OCR bounding boxes (if any) | |
if ocr_bbox: | |
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h]) | |
ocr_bbox = ocr_bbox.tolist() | |
else: | |
print('no ocr bbox!!!') | |
ocr_bbox = None | |
ocr_bbox_elem = [{'type': 'text', 'bbox': box, 'interactivity': False, 'content': txt} | |
for box, txt in zip(ocr_bbox, ocr_text)] | |
xyxy_elem = [{'type': 'icon', 'bbox': box, 'interactivity': True, 'content': None} | |
for box in xyxy.tolist()] | |
filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem) | |
# Sort filtered boxes so that boxes with 'content' == None are at the end | |
filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None) | |
starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1) | |
filtered_boxes_tensor = torch.tensor([box['bbox'] for box in filtered_boxes_elem]) | |
if batch_size is None: | |
batch_size = 32 | |
# Generate parsed icon semantics if required | |
if use_local_semantics: | |
caption_model = caption_model_processor['model'] | |
if 'phi3_v' in caption_model.config.model_type: | |
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes_tensor, ocr_bbox, image_source_np, caption_model_processor) | |
else: | |
parsed_content_icon = get_parsed_content_icon(filtered_boxes_tensor, starting_idx, image_source_np, caption_model_processor, prompt=prompt, batch_size=batch_size) | |
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] | |
icon_start = len(ocr_text) | |
parsed_content_icon_ls = [] | |
# Fill boxes with no OCR content with parsed icon content | |
for box in filtered_boxes_elem: | |
if box['content'] is None and parsed_content_icon: | |
box['content'] = parsed_content_icon.pop(0) | |
for i, txt in enumerate(parsed_content_icon): | |
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}") | |
parsed_content_merged = ocr_text + parsed_content_icon_ls | |
else: | |
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] | |
parsed_content_merged = ocr_text | |
filtered_boxes_cxcywh = box_convert(boxes=filtered_boxes_tensor, in_fmt="xyxy", out_fmt="cxcywh") | |
phrases = [i for i in range(len(filtered_boxes_cxcywh))] | |
# Annotate image with bounding boxes and labels | |
if draw_bbox_config: | |
annotated_frame, label_coordinates = annotate( | |
image_source=image_source_np, boxes=filtered_boxes_cxcywh, logits=logits, phrases=phrases, **draw_bbox_config | |
) | |
else: | |
annotated_frame, label_coordinates = annotate( | |
image_source=image_source_np, boxes=filtered_boxes_cxcywh, logits=logits, phrases=phrases, | |
text_scale=text_scale, text_padding=text_padding | |
) | |
pil_img = Image.fromarray(annotated_frame) | |
buffered = io.BytesIO() | |
pil_img.save(buffered, format="PNG") | |
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii') | |
if output_coord_in_ratio: | |
label_coordinates = {k: [v[0] / w, v[1] / h, v[2] / w, v[3] / h] for k, v in label_coordinates.items()} | |
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0] | |
return encoded_image, label_coordinates, filtered_boxes_elem | |
def get_xywh(input): | |
""" | |
Converts a bounding box from a list of two points into (x, y, width, height). | |
""" | |
x, y = input[0][0], input[0][1] | |
w = input[2][0] - input[0][0] | |
h = input[2][1] - input[0][1] | |
return int(x), int(y), int(w), int(h) | |
def get_xyxy(input): | |
""" | |
Converts a bounding box from a list of two points into (x, y, x2, y2). | |
""" | |
x, y = input[0][0], input[0][1] | |
x2, y2 = input[2][0], input[2][1] | |
return int(x), int(y), int(x2), int(y2) | |
def get_xywh_yolo(input): | |
""" | |
Converts a YOLO-style bounding box (x1, y1, x2, y2) into (x, y, width, height). | |
""" | |
x, y = input[0], input[1] | |
w = input[2] - input[0] | |
h = input[3] - input[1] | |
return int(x), int(y), int(w), int(h) | |
def check_ocr_box(image_path, display_img=True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False): | |
""" | |
Runs OCR on the given image using PaddleOCR or EasyOCR and optionally displays annotated results. | |
Returns: | |
A tuple containing: | |
- A tuple (text, bounding boxes) | |
- The goal_filtering parameter (unchanged) | |
""" | |
if use_paddleocr: | |
text_threshold = 0.5 if easyocr_args is None else easyocr_args.get('text_threshold', 0.5) | |
result = paddle_ocr.ocr(image_path, cls=False)[0] | |
conf = [item[1] for item in result] | |
coord = [item[0] for item in result if item[1][1] > text_threshold] | |
text = [item[1][0] for item in result if item[1][1] > text_threshold] | |
else: # EasyOCR | |
if easyocr_args is None: | |
easyocr_args = {} | |
result = reader.readtext(image_path, **easyocr_args) | |
coord = [item[0] for item in result] | |
text = [item[1] for item in result] | |
if display_img: | |
opencv_img = cv2.imread(image_path) | |
opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR) | |
bb = [] | |
for item in coord: | |
x, y, a, b = get_xywh(item) | |
bb.append((x, y, a, b)) | |
cv2.rectangle(opencv_img, (x, y), (x + a, y + b), (0, 255, 0), 2) | |
plt.imshow(opencv_img) | |
else: | |
if output_bb_format == 'xywh': | |
bb = [get_xywh(item) for item in coord] | |
elif output_bb_format == 'xyxy': | |
bb = [get_xyxy(item) for item in coord] | |
return (text, bb), goal_filtering | |