gauthambalraj07@gmail.com commited on
Commit
a1c932a
·
1 Parent(s): 0f7b8c8

Initial commit with model files

Browse files
Files changed (6) hide show
  1. .DS_Store +0 -0
  2. Dockerfile +35 -0
  3. app.py +133 -0
  4. download_models.py +40 -0
  5. requirements.txt +21 -0
  6. utils.py +535 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dockerfile ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use Python 3.9 slim base image
2
+ FROM python:3.9-slim
3
+
4
+ # Install system dependencies
5
+ RUN apt-get update && apt-get install -y \
6
+ libgl1-mesa-glx \
7
+ libglib2.0-0 \
8
+ wget \
9
+ git \
10
+ && rm -rf /var/lib/apt/lists/*
11
+
12
+ # Set working directory
13
+ WORKDIR /app
14
+
15
+ # Copy requirements and install dependencies
16
+ COPY requirements.txt .
17
+ RUN pip install --no-cache-dir -r requirements.txt
18
+
19
+ # Create directories for models and temporary files with proper permissions
20
+ RUN mkdir -p /app/weights/icon_detect /app/weights/icon_caption_florence /app/imgs \
21
+ && chown -R 1000:1000 /app
22
+
23
+ # Copy application code
24
+ COPY main.py utils.py download_models.py ./
25
+
26
+ # Download models during build
27
+ RUN python download_models.py
28
+
29
+ # Set up user for HF Spaces
30
+ RUN useradd -m -u 1000 user
31
+ USER user
32
+ ENV PATH="/home/user/.local/bin:$PATH"
33
+
34
+ # Run the application
35
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile, HTTPException
2
+ from fastapi.responses import JSONResponse
3
+ from pydantic import BaseModel
4
+ from typing import Optional
5
+ import base64
6
+ import io
7
+ from PIL import Image
8
+ import torch
9
+ import numpy as np
10
+ import os
11
+
12
+ # Existing imports
13
+ import numpy as np
14
+ import torch
15
+ from PIL import Image
16
+ import io
17
+
18
+ from utils import (
19
+ check_ocr_box,
20
+ get_yolo_model,
21
+ get_caption_model_processor,
22
+ get_som_labeled_img,
23
+ )
24
+ import torch
25
+
26
+ # yolo_model = get_yolo_model(model_path='/data/icon_detect/best.pt')
27
+ # caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="/data/icon_caption_florence")
28
+
29
+ from ultralytics import YOLO
30
+
31
+ # if not os.path.exists("/data/icon_detect"):
32
+ # os.makedirs("/data/icon_detect")
33
+
34
+ try:
35
+ yolo_model = torch.load("weights/icon_detect/best.pt", map_location="cuda", weights_only=False)["model"]
36
+ yolo_model = yolo_model.to("cuda")
37
+ except:
38
+ yolo_model = torch.load("weights/icon_detect/best.pt", map_location="cpu", weights_only=False)["model"]
39
+
40
+ from transformers import AutoProcessor, AutoModelForCausalLM
41
+
42
+ processor = AutoProcessor.from_pretrained(
43
+ "microsoft/Florence-2-base", trust_remote_code=True
44
+ )
45
+
46
+ try:
47
+ model = AutoModelForCausalLM.from_pretrained(
48
+ "weights/icon_caption_florence",
49
+ torch_dtype=torch.float16,
50
+ trust_remote_code=True,
51
+ ).to("cuda")
52
+ except:
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ "weights/icon_caption_florence",
55
+ torch_dtype=torch.float16,
56
+ trust_remote_code=True,
57
+ )
58
+ caption_model_processor = {"processor": processor, "model": model}
59
+ print("finish loading model!!!")
60
+
61
+ app = FastAPI()
62
+
63
+
64
+ class ProcessResponse(BaseModel):
65
+ image: str # Base64 encoded image
66
+ parsed_content_list: str
67
+ label_coordinates: str
68
+
69
+
70
+ def process(
71
+ image_input: Image.Image, box_threshold: float, iou_threshold: float
72
+ ) -> ProcessResponse:
73
+ image_save_path = "imgs/saved_image_demo.png"
74
+ image_input.save(image_save_path)
75
+ image = Image.open(image_save_path)
76
+ box_overlay_ratio = image.size[0] / 3200
77
+ draw_bbox_config = {
78
+ "text_scale": 0.8 * box_overlay_ratio,
79
+ "text_thickness": max(int(2 * box_overlay_ratio), 1),
80
+ "text_padding": max(int(3 * box_overlay_ratio), 1),
81
+ "thickness": max(int(3 * box_overlay_ratio), 1),
82
+ }
83
+
84
+ ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
85
+ image_save_path,
86
+ display_img=False,
87
+ output_bb_format="xyxy",
88
+ goal_filtering=None,
89
+ easyocr_args={"paragraph": False, "text_threshold": 0.9},
90
+ use_paddleocr=True,
91
+ )
92
+ text, ocr_bbox = ocr_bbox_rslt
93
+ dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
94
+ image_save_path,
95
+ yolo_model,
96
+ BOX_TRESHOLD=box_threshold,
97
+ output_coord_in_ratio=True,
98
+ ocr_bbox=ocr_bbox,
99
+ draw_bbox_config=draw_bbox_config,
100
+ caption_model_processor=caption_model_processor,
101
+ ocr_text=text,
102
+ iou_threshold=iou_threshold,
103
+ )
104
+ image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
105
+ print("finish processing")
106
+ parsed_content_list_str = "\n".join(parsed_content_list)
107
+
108
+ # Encode image to base64
109
+ buffered = io.BytesIO()
110
+ image.save(buffered, format="PNG")
111
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
112
+
113
+ return ProcessResponse(
114
+ image=img_str,
115
+ parsed_content_list=str(parsed_content_list_str),
116
+ label_coordinates=str(label_coordinates),
117
+ )
118
+
119
+
120
+ @app.post("/process_image", response_model=ProcessResponse)
121
+ async def process_image(
122
+ image_file: UploadFile = File(...),
123
+ box_threshold: float = 0.05,
124
+ iou_threshold: float = 0.1,
125
+ ):
126
+ try:
127
+ contents = await image_file.read()
128
+ image_input = Image.open(io.BytesIO(contents)).convert("RGB")
129
+ except Exception as e:
130
+ raise HTTPException(status_code=400, detail="Invalid image file")
131
+
132
+ response = process(image_input, box_threshold, iou_threshold)
133
+ return response
download_models.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from huggingface_hub import hf_hub_download
3
+ import shutil
4
+
5
+ def download_models():
6
+ # Create directories if they don't exist
7
+ os.makedirs("weights/icon_detect", exist_ok=True)
8
+ os.makedirs("weights/icon_caption_florence", exist_ok=True)
9
+
10
+ # Define file mappings (repository path -> local path)
11
+ files_to_download = {
12
+ "icon_caption_florence/config.json": "weights/icon_caption_florence/config.json",
13
+ "icon_caption_florence/generation_config.json": "weights/icon_caption_florence/generation_config.json",
14
+ "icon_caption_florence/model.safetensors": "weights/icon_caption_florence/model.safetensors",
15
+ "icon_detect/best.pt": "weights/icon_detect/best.pt"
16
+ }
17
+
18
+ # Download each file
19
+ for repo_path, local_path in files_to_download.items():
20
+ if not os.path.exists(local_path):
21
+ print(f"Downloading {repo_path}...")
22
+ try:
23
+ downloaded_file = hf_hub_download(
24
+ repo_id="banao-tech/OmniParser",
25
+ filename=repo_path,
26
+ local_dir="temp"
27
+ )
28
+ # Move the file to the correct location
29
+ os.makedirs(os.path.dirname(local_path), exist_ok=True)
30
+ shutil.move(downloaded_file, local_path)
31
+ print(f"Successfully downloaded and moved to {local_path}")
32
+ except Exception as e:
33
+ print(f"Error downloading {repo_path}: {str(e)}")
34
+
35
+ # Clean up temp directory
36
+ if os.path.exists("temp"):
37
+ shutil.rmtree("temp")
38
+
39
+ if __name__ == "__main__":
40
+ download_models()
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.0.1
2
+ easyocr
3
+ torchvision
4
+ supervision==0.18.0
5
+ openai==1.3.5
6
+ transformers
7
+ ultralytics==8.1.24
8
+ azure-identity
9
+ numpy
10
+ opencv-python
11
+ opencv-python-headless
12
+ gradio
13
+ dill
14
+ accelerate
15
+ timm
16
+ einops==0.8.0
17
+ paddlepaddle
18
+ paddleocr
19
+ fastapi
20
+ uvicorn
21
+ huggingface_hub
utils.py ADDED
@@ -0,0 +1,535 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from ultralytics import YOLO
2
+ import os
3
+ import io
4
+ import base64
5
+ import time
6
+ from PIL import Image, ImageDraw, ImageFont
7
+ import json
8
+ import requests
9
+ # utility function
10
+ import os
11
+ from openai import AzureOpenAI
12
+
13
+ import json
14
+ import sys
15
+ import os
16
+ import cv2
17
+ import numpy as np
18
+ # %matplotlib inline
19
+ from matplotlib import pyplot as plt
20
+ import easyocr
21
+ from paddleocr import PaddleOCR
22
+ reader = easyocr.Reader(['en'])
23
+ paddle_ocr = PaddleOCR(
24
+ lang='en', # other lang also available
25
+ use_angle_cls=False,
26
+ use_gpu=False, # using cuda will conflict with pytorch in the same process
27
+ show_log=False,
28
+ max_batch_size=1024,
29
+ use_dilation=True, # improves accuracy
30
+ det_db_score_mode='slow', # improves accuracy
31
+ rec_batch_num=1024)
32
+ import time
33
+ import base64
34
+
35
+ import os
36
+ import ast
37
+ import torch
38
+ from typing import Tuple, List
39
+ from torchvision.ops import box_convert
40
+ import re
41
+ from torchvision.transforms import ToPILImage
42
+ import supervision as sv
43
+ import torchvision.transforms as T
44
+
45
+
46
+ def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
47
+ if not device:
48
+ device = "cuda" if torch.cuda.is_available() else "cpu"
49
+ if model_name == "blip2":
50
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
51
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
52
+ if device == 'cpu':
53
+ model = Blip2ForConditionalGeneration.from_pretrained(
54
+ model_name_or_path, device_map=None, torch_dtype=torch.float32
55
+ )
56
+ else:
57
+ model = Blip2ForConditionalGeneration.from_pretrained(
58
+ model_name_or_path, device_map=None, torch_dtype=torch.float16
59
+ ).to(device)
60
+ elif model_name == "florence2":
61
+ from transformers import AutoProcessor, AutoModelForCausalLM
62
+ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
63
+ if device == 'cpu':
64
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
65
+ else:
66
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
67
+ return {'model': model.to(device), 'processor': processor}
68
+
69
+
70
+ def get_yolo_model(model_path):
71
+ from ultralytics import YOLO
72
+ # Load the model.
73
+ model = YOLO(model_path)
74
+ return model
75
+
76
+
77
+ @torch.inference_mode()
78
+ def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=32):
79
+ # Number of samples per batch, --> 256 roughly takes 23 GB of GPU memory for florence model
80
+
81
+ to_pil = ToPILImage()
82
+ if starting_idx:
83
+ non_ocr_boxes = filtered_boxes[starting_idx:]
84
+ else:
85
+ non_ocr_boxes = filtered_boxes
86
+ croped_pil_image = []
87
+ for i, coord in enumerate(non_ocr_boxes):
88
+ xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
89
+ ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
90
+ cropped_image = image_source[ymin:ymax, xmin:xmax, :]
91
+ croped_pil_image.append(to_pil(cropped_image))
92
+
93
+ model, processor = caption_model_processor['model'], caption_model_processor['processor']
94
+ if not prompt:
95
+ if 'florence' in model.config.name_or_path:
96
+ prompt = "<CAPTION>"
97
+ else:
98
+ prompt = "The image shows"
99
+
100
+ generated_texts = []
101
+ device = model.device
102
+ for i in range(0, len(croped_pil_image), batch_size):
103
+ start = time.time()
104
+ batch = croped_pil_image[i:i+batch_size]
105
+ if model.device.type == 'cuda':
106
+ inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
107
+ else:
108
+ inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
109
+ if 'florence' in model.config.name_or_path:
110
+ generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=100,num_beams=3, do_sample=False)
111
+ else:
112
+ generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
113
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
114
+ generated_text = [gen.strip() for gen in generated_text]
115
+ generated_texts.extend(generated_text)
116
+
117
+ return generated_texts
118
+
119
+
120
+
121
+ def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
122
+ to_pil = ToPILImage()
123
+ if ocr_bbox:
124
+ non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
125
+ else:
126
+ non_ocr_boxes = filtered_boxes
127
+ croped_pil_image = []
128
+ for i, coord in enumerate(non_ocr_boxes):
129
+ xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
130
+ ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
131
+ cropped_image = image_source[ymin:ymax, xmin:xmax, :]
132
+ croped_pil_image.append(to_pil(cropped_image))
133
+
134
+ model, processor = caption_model_processor['model'], caption_model_processor['processor']
135
+ device = model.device
136
+ messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
137
+ prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
138
+
139
+ batch_size = 5 # Number of samples per batch
140
+ generated_texts = []
141
+
142
+ for i in range(0, len(croped_pil_image), batch_size):
143
+ images = croped_pil_image[i:i+batch_size]
144
+ image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
145
+ inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
146
+ texts = [prompt] * len(images)
147
+ for i, txt in enumerate(texts):
148
+ input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
149
+ inputs['input_ids'].append(input['input_ids'])
150
+ inputs['attention_mask'].append(input['attention_mask'])
151
+ inputs['pixel_values'].append(input['pixel_values'])
152
+ inputs['image_sizes'].append(input['image_sizes'])
153
+ max_len = max([x.shape[1] for x in inputs['input_ids']])
154
+ for i, v in enumerate(inputs['input_ids']):
155
+ inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
156
+ inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
157
+ inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
158
+
159
+ generation_args = {
160
+ "max_new_tokens": 25,
161
+ "temperature": 0.01,
162
+ "do_sample": False,
163
+ }
164
+ generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
165
+ # # remove input tokens
166
+ generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
167
+ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
168
+ response = [res.strip('\n').strip() for res in response]
169
+ generated_texts.extend(response)
170
+
171
+ return generated_texts
172
+
173
+ def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
174
+ assert ocr_bbox is None or isinstance(ocr_bbox, List)
175
+
176
+ def box_area(box):
177
+ return (box[2] - box[0]) * (box[3] - box[1])
178
+
179
+ def intersection_area(box1, box2):
180
+ x1 = max(box1[0], box2[0])
181
+ y1 = max(box1[1], box2[1])
182
+ x2 = min(box1[2], box2[2])
183
+ y2 = min(box1[3], box2[3])
184
+ return max(0, x2 - x1) * max(0, y2 - y1)
185
+
186
+ def IoU(box1, box2):
187
+ intersection = intersection_area(box1, box2)
188
+ union = box_area(box1) + box_area(box2) - intersection + 1e-6
189
+ if box_area(box1) > 0 and box_area(box2) > 0:
190
+ ratio1 = intersection / box_area(box1)
191
+ ratio2 = intersection / box_area(box2)
192
+ else:
193
+ ratio1, ratio2 = 0, 0
194
+ return max(intersection / union, ratio1, ratio2)
195
+
196
+ def is_inside(box1, box2):
197
+ # return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
198
+ intersection = intersection_area(box1, box2)
199
+ ratio1 = intersection / box_area(box1)
200
+ return ratio1 > 0.95
201
+
202
+ boxes = boxes.tolist()
203
+ filtered_boxes = []
204
+ if ocr_bbox:
205
+ filtered_boxes.extend(ocr_bbox)
206
+ # print('ocr_bbox!!!', ocr_bbox)
207
+ for i, box1 in enumerate(boxes):
208
+ # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
209
+ is_valid_box = True
210
+ for j, box2 in enumerate(boxes):
211
+ # keep the smaller box
212
+ if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
213
+ is_valid_box = False
214
+ break
215
+ if is_valid_box:
216
+ # add the following 2 lines to include ocr bbox
217
+ if ocr_bbox:
218
+ # only add the box if it does not overlap with any ocr bbox
219
+ if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)):
220
+ filtered_boxes.append(box1)
221
+ else:
222
+ filtered_boxes.append(box1)
223
+ return torch.tensor(filtered_boxes)
224
+
225
+
226
+ def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
227
+ '''
228
+ ocr_bbox format: [{'type': 'text', 'bbox':[x,y], 'interactivity':False, 'content':str }, ...]
229
+ boxes format: [{'type': 'icon', 'bbox':[x,y], 'interactivity':True, 'content':None }, ...]
230
+
231
+ '''
232
+ assert ocr_bbox is None or isinstance(ocr_bbox, List)
233
+
234
+ def box_area(box):
235
+ return (box[2] - box[0]) * (box[3] - box[1])
236
+
237
+ def intersection_area(box1, box2):
238
+ x1 = max(box1[0], box2[0])
239
+ y1 = max(box1[1], box2[1])
240
+ x2 = min(box1[2], box2[2])
241
+ y2 = min(box1[3], box2[3])
242
+ return max(0, x2 - x1) * max(0, y2 - y1)
243
+
244
+ def IoU(box1, box2):
245
+ intersection = intersection_area(box1, box2)
246
+ union = box_area(box1) + box_area(box2) - intersection + 1e-6
247
+ if box_area(box1) > 0 and box_area(box2) > 0:
248
+ ratio1 = intersection / box_area(box1)
249
+ ratio2 = intersection / box_area(box2)
250
+ else:
251
+ ratio1, ratio2 = 0, 0
252
+ return max(intersection / union, ratio1, ratio2)
253
+
254
+ def is_inside(box1, box2):
255
+ # return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
256
+ intersection = intersection_area(box1, box2)
257
+ ratio1 = intersection / box_area(box1)
258
+ return ratio1 > 0.80
259
+
260
+ # boxes = boxes.tolist()
261
+ filtered_boxes = []
262
+ if ocr_bbox:
263
+ filtered_boxes.extend(ocr_bbox)
264
+ # print('ocr_bbox!!!', ocr_bbox)
265
+ for i, box1_elem in enumerate(boxes):
266
+ box1 = box1_elem['bbox']
267
+ is_valid_box = True
268
+ for j, box2_elem in enumerate(boxes):
269
+ # keep the smaller box
270
+ box2 = box2_elem['bbox']
271
+ if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
272
+ is_valid_box = False
273
+ break
274
+ if is_valid_box:
275
+ # add the following 2 lines to include ocr bbox
276
+ if ocr_bbox:
277
+ # keep yolo boxes + prioritize ocr label
278
+ box_added = False
279
+ for box3_elem in ocr_bbox:
280
+ if not box_added:
281
+ box3 = box3_elem['bbox']
282
+ if is_inside(box3, box1): # ocr inside icon
283
+ # box_added = True
284
+ # delete the box3_elem from ocr_bbox
285
+ try:
286
+ filtered_boxes.append({'type': 'text', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': box3_elem['content']})
287
+ filtered_boxes.remove(box3_elem)
288
+ # print('remove ocr bbox:', box3_elem)
289
+ except:
290
+ continue
291
+ # break
292
+ elif is_inside(box1, box3): # icon inside ocr
293
+ box_added = True
294
+ # try:
295
+ # filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None})
296
+ # filtered_boxes.remove(box3_elem)
297
+ # except:
298
+ # continue
299
+ break
300
+ else:
301
+ continue
302
+ if not box_added:
303
+ filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None})
304
+
305
+ else:
306
+ filtered_boxes.append(box1)
307
+ return filtered_boxes # torch.tensor(filtered_boxes)
308
+
309
+
310
+ def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
311
+ transform = T.Compose(
312
+ [
313
+ T.RandomResize([800], max_size=1333),
314
+ T.ToTensor(),
315
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
316
+ ]
317
+ )
318
+ image_source = Image.open(image_path).convert("RGB")
319
+ image = np.asarray(image_source)
320
+ image_transformed, _ = transform(image_source, None)
321
+ return image, image_transformed
322
+
323
+
324
+ def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
325
+ text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
326
+ """
327
+ This function annotates an image with bounding boxes and labels.
328
+
329
+ Parameters:
330
+ image_source (np.ndarray): The source image to be annotated.
331
+ boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
332
+ logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
333
+ phrases (List[str]): A list of labels for each bounding box.
334
+ text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
335
+
336
+ Returns:
337
+ np.ndarray: The annotated image.
338
+ """
339
+ h, w, _ = image_source.shape
340
+ boxes = boxes * torch.Tensor([w, h, w, h])
341
+ xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
342
+ xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
343
+ detections = sv.Detections(xyxy=xyxy)
344
+
345
+ labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
346
+
347
+ from util.box_annotator import BoxAnnotator
348
+ box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
349
+ annotated_frame = image_source.copy()
350
+ annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
351
+
352
+ label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
353
+ return annotated_frame, label_coordinates
354
+
355
+
356
+ def predict(model, image, caption, box_threshold, text_threshold):
357
+ """ Use huggingface model to replace the original model
358
+ """
359
+ model, processor = model['model'], model['processor']
360
+ device = model.device
361
+
362
+ inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
363
+ with torch.no_grad():
364
+ outputs = model(**inputs)
365
+
366
+ results = processor.post_process_grounded_object_detection(
367
+ outputs,
368
+ inputs.input_ids,
369
+ box_threshold=box_threshold, # 0.4,
370
+ text_threshold=text_threshold, # 0.3,
371
+ target_sizes=[image.size[::-1]]
372
+ )[0]
373
+ boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
374
+ return boxes, logits, phrases
375
+
376
+
377
+ def predict_yolo(model, image_path, box_threshold, imgsz, scale_img, iou_threshold=0.7):
378
+ """ Use huggingface model to replace the original model
379
+ """
380
+ # model = model['model']
381
+ if scale_img:
382
+ result = model.predict(
383
+ source=image_path,
384
+ conf=box_threshold,
385
+ imgsz=imgsz,
386
+ iou=iou_threshold, # default 0.7
387
+ )
388
+ else:
389
+ result = model.predict(
390
+ source=image_path,
391
+ conf=box_threshold,
392
+ iou=iou_threshold, # default 0.7
393
+ )
394
+ boxes = result[0].boxes.xyxy#.tolist() # in pixel space
395
+ conf = result[0].boxes.conf
396
+ phrases = [str(i) for i in range(len(boxes))]
397
+
398
+ return boxes, conf, phrases
399
+
400
+
401
+ def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=None):
402
+ """ ocr_bbox: list of xyxy format bbox
403
+ """
404
+ image_source = Image.open(img_path).convert("RGB")
405
+ w, h = image_source.size
406
+ if not imgsz:
407
+ imgsz = (h, w)
408
+ # print('image size:', w, h)
409
+ xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1)
410
+ xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
411
+ image_source = np.asarray(image_source)
412
+ phrases = [str(i) for i in range(len(phrases))]
413
+
414
+ # annotate the image with labels
415
+ h, w, _ = image_source.shape
416
+ if ocr_bbox:
417
+ ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
418
+ ocr_bbox=ocr_bbox.tolist()
419
+ else:
420
+ print('no ocr bbox!!!')
421
+ ocr_bbox = None
422
+ # filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox)
423
+ # starting_idx = len(ocr_bbox)
424
+ # print('len(filtered_boxes):', len(filtered_boxes), starting_idx)
425
+
426
+ ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt} for box, txt in zip(ocr_bbox, ocr_text)]
427
+ xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist()]
428
+ filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
429
+
430
+ # sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None
431
+ filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
432
+ # get the index of the first 'content': None
433
+ starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
434
+ filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
435
+
436
+
437
+ # get parsed icon local semantics
438
+ if use_local_semantics:
439
+ caption_model = caption_model_processor['model']
440
+ if 'phi3_v' in caption_model.config.model_type:
441
+ parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
442
+ else:
443
+ parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size)
444
+ ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
445
+ icon_start = len(ocr_text)
446
+ parsed_content_icon_ls = []
447
+ # fill the filtered_boxes_elem None content with parsed_content_icon in order
448
+ for i, box in enumerate(filtered_boxes_elem):
449
+ if box['content'] is None:
450
+ box['content'] = parsed_content_icon.pop(0)
451
+ for i, txt in enumerate(parsed_content_icon):
452
+ parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
453
+ parsed_content_merged = ocr_text + parsed_content_icon_ls
454
+ else:
455
+ ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
456
+ parsed_content_merged = ocr_text
457
+
458
+ filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
459
+
460
+ phrases = [i for i in range(len(filtered_boxes))]
461
+
462
+ # draw boxes
463
+ if draw_bbox_config:
464
+ annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
465
+ else:
466
+ annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
467
+
468
+ pil_img = Image.fromarray(annotated_frame)
469
+ buffered = io.BytesIO()
470
+ pil_img.save(buffered, format="PNG")
471
+ encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
472
+ if output_coord_in_ratio:
473
+ # h, w, _ = image_source.shape
474
+ label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
475
+ assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
476
+
477
+ return encoded_image, label_coordinates, filtered_boxes_elem
478
+
479
+
480
+ def get_xywh(input):
481
+ x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
482
+ x, y, w, h = int(x), int(y), int(w), int(h)
483
+ return x, y, w, h
484
+
485
+ def get_xyxy(input):
486
+ x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
487
+ x, y, xp, yp = int(x), int(y), int(xp), int(yp)
488
+ return x, y, xp, yp
489
+
490
+ def get_xywh_yolo(input):
491
+ x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
492
+ x, y, w, h = int(x), int(y), int(w), int(h)
493
+ return x, y, w, h
494
+
495
+
496
+
497
+ def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
498
+ if use_paddleocr:
499
+ if easyocr_args is None:
500
+ text_threshold = 0.5
501
+ else:
502
+ text_threshold = easyocr_args['text_threshold']
503
+ result = paddle_ocr.ocr(image_path, cls=False)[0]
504
+ conf = [item[1] for item in result]
505
+ coord = [item[0] for item in result if item[1][1] > text_threshold]
506
+ text = [item[1][0] for item in result if item[1][1] > text_threshold]
507
+ else: # EasyOCR
508
+ if easyocr_args is None:
509
+ easyocr_args = {}
510
+ result = reader.readtext(image_path, **easyocr_args)
511
+ # print('goal filtering pred:', result[-5:])
512
+ coord = [item[0] for item in result]
513
+ text = [item[1] for item in result]
514
+ # read the image using cv2
515
+ if display_img:
516
+ opencv_img = cv2.imread(image_path)
517
+ opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
518
+ bb = []
519
+ for item in coord:
520
+ x, y, a, b = get_xywh(item)
521
+ # print(x, y, a, b)
522
+ bb.append((x, y, a, b))
523
+ cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
524
+
525
+ # Display the image
526
+ plt.imshow(opencv_img)
527
+ else:
528
+ if output_bb_format == 'xywh':
529
+ bb = [get_xywh(item) for item in coord]
530
+ elif output_bb_format == 'xyxy':
531
+ bb = [get_xyxy(item) for item in coord]
532
+ # print('bounding box!!!', bb)
533
+ return (text, bb), goal_filtering
534
+
535
+