banao-tech commited on
Commit
beccd45
·
verified ·
1 Parent(s): c5d6df1

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +29 -12
main.py CHANGED
@@ -30,7 +30,6 @@ from ultralytics import YOLO
30
 
31
  # if not os.path.exists("/data/icon_detect"):
32
  # os.makedirs("/data/icon_detect")
33
-
34
  try:
35
  yolo_model = torch.load("weights/icon_detect/best.pt", map_location="cuda", weights_only=False)["model"]
36
  yolo_model = yolo_model.to("cuda")
@@ -43,13 +42,18 @@ processor = AutoProcessor.from_pretrained(
43
  "microsoft/Florence-2-base", trust_remote_code=True
44
  )
45
 
46
-
47
- model = AutoModelForCausalLM.from_pretrained(
48
- "weights/icon_caption_florence",
49
- torch_dtype=torch.float16,
50
- trust_remote_code=True,
51
- device_map='auto',
52
- ).to("cuda")
 
 
 
 
 
53
  caption_model_processor = {"processor": processor, "model": model}
54
  print("finish loading model!!!")
55
 
@@ -66,6 +70,7 @@ def process(
66
  image_input: Image.Image, box_threshold: float, iou_threshold: float
67
  ) -> ProcessResponse:
68
  image_save_path = "imgs/saved_image_demo.png"
 
69
  image_input.save(image_save_path)
70
  image = Image.open(image_save_path)
71
  box_overlay_ratio = image.size[0] / 3200
@@ -121,8 +126,20 @@ async def process_image(
121
  try:
122
  contents = await image_file.read()
123
  image_input = Image.open(io.BytesIO(contents)).convert("RGB")
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  except Exception as e:
125
- raise HTTPException(status_code=400, detail="Invalid image file")
126
-
127
- response = process(image_input, box_threshold, iou_threshold)
128
- return response
 
30
 
31
  # if not os.path.exists("/data/icon_detect"):
32
  # os.makedirs("/data/icon_detect")
 
33
  try:
34
  yolo_model = torch.load("weights/icon_detect/best.pt", map_location="cuda", weights_only=False)["model"]
35
  yolo_model = yolo_model.to("cuda")
 
42
  "microsoft/Florence-2-base", trust_remote_code=True
43
  )
44
 
45
+ try:
46
+ model = AutoModelForCausalLM.from_pretrained(
47
+ "weights/icon_caption_florence",
48
+ torch_dtype=torch.float16,
49
+ trust_remote_code=True,
50
+ ).to("cuda")
51
+ except:
52
+ model = AutoModelForCausalLM.from_pretrained(
53
+ "weights/icon_caption_florence",
54
+ torch_dtype=torch.float16,
55
+ trust_remote_code=True,
56
+ )
57
  caption_model_processor = {"processor": processor, "model": model}
58
  print("finish loading model!!!")
59
 
 
70
  image_input: Image.Image, box_threshold: float, iou_threshold: float
71
  ) -> ProcessResponse:
72
  image_save_path = "imgs/saved_image_demo.png"
73
+ os.makedirs(os.path.dirname(image_save_path), exist_ok=True)
74
  image_input.save(image_save_path)
75
  image = Image.open(image_save_path)
76
  box_overlay_ratio = image.size[0] / 3200
 
126
  try:
127
  contents = await image_file.read()
128
  image_input = Image.open(io.BytesIO(contents)).convert("RGB")
129
+
130
+ # Add debug logging
131
+ print(f"Processing image: {image_file.filename}")
132
+ print(f"Image size: {image_input.size}")
133
+
134
+ response = process(image_input, box_threshold, iou_threshold)
135
+
136
+ # Validate response
137
+ if not response.image:
138
+ raise ValueError("Empty image in response")
139
+
140
+ return response
141
+
142
  except Exception as e:
143
+ import traceback
144
+ traceback.print_exc() # This will show full error in logs
145
+ raise HTTPException(status_code=500, detail=str(e))