# from ultralytics import YOLO import os import io import base64 import time from PIL import Image, ImageDraw, ImageFont import json import requests # utility function import os from openai import AzureOpenAI import json import sys import os import cv2 import numpy as np # %matplotlib inline from matplotlib import pyplot as plt import easyocr from paddleocr import PaddleOCR reader = easyocr.Reader(['en'], model_storage_directory="/usr/src/app/.EasyOCR") # paddle_ocr = PaddleOCR( # lang='en', # other lang also available # use_angle_cls=False, # use_gpu=False, # using cuda will conflict with pytorch in the same process # show_log=False, # max_batch_size=1024, # use_dilation=True, # improves accuracy # det_db_score_mode='slow', # improves accuracy # rec_batch_num=1024) paddle_ocr = None import time import base64 import os import ast import torch from typing import Tuple, List from torchvision.ops import box_convert import re from torchvision.transforms import ToPILImage import supervision as sv import torchvision.transforms as T def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None): if not device: device = "cuda" if torch.cuda.is_available() else "cpu" if model_name == "blip2": from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") if device == 'cpu': model = Blip2ForConditionalGeneration.from_pretrained( model_name_or_path, device_map=None, torch_dtype=torch.float32 ) else: model = Blip2ForConditionalGeneration.from_pretrained( model_name_or_path, device_map=None, torch_dtype=torch.float16 ).to(device) elif model_name == "florence2": from transformers import AutoProcessor, AutoModelForCausalLM processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) if device == 'cpu': model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True) else: model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device) return {'model': model.to(device), 'processor': processor} def get_yolo_model(model_path): from ultralytics import YOLO # Load the model. model = YOLO(model_path) return model @torch.inference_mode() def get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=None): to_pil = ToPILImage() if ocr_bbox: non_ocr_boxes = filtered_boxes[len(ocr_bbox):] else: non_ocr_boxes = filtered_boxes croped_pil_image = [] for i, coord in enumerate(non_ocr_boxes): xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) cropped_image = image_source[ymin:ymax, xmin:xmax, :] croped_pil_image.append(to_pil(cropped_image)) model, processor = caption_model_processor['model'], caption_model_processor['processor'] if not prompt: if 'florence' in model.config.name_or_path: prompt = "" else: prompt = "The image shows" batch_size = 10 # Number of samples per batch generated_texts = [] device = model.device for i in range(0, len(croped_pil_image), batch_size): batch = croped_pil_image[i:i+batch_size] if model.device.type == 'cuda': inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16) else: inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device) if 'florence' in model.config.name_or_path: generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,num_beams=3, do_sample=False) else: generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True, generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) generated_text = [gen.strip() for gen in generated_text] generated_texts.extend(generated_text) return generated_texts def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor): to_pil = ToPILImage() if ocr_bbox: non_ocr_boxes = filtered_boxes[len(ocr_bbox):] else: non_ocr_boxes = filtered_boxes croped_pil_image = [] for i, coord in enumerate(non_ocr_boxes): xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) cropped_image = image_source[ymin:ymax, xmin:xmax, :] croped_pil_image.append(to_pil(cropped_image)) model, processor = caption_model_processor['model'], caption_model_processor['processor'] device = model.device messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}] prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) batch_size = 5 # Number of samples per batch generated_texts = [] for i in range(0, len(croped_pil_image), batch_size): images = croped_pil_image[i:i+batch_size] image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images] inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []} texts = [prompt] * len(images) for i, txt in enumerate(texts): input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt") inputs['input_ids'].append(input['input_ids']) inputs['attention_mask'].append(input['attention_mask']) inputs['pixel_values'].append(input['pixel_values']) inputs['image_sizes'].append(input['image_sizes']) max_len = max([x.shape[1] for x in inputs['input_ids']]) for i, v in enumerate(inputs['input_ids']): inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1) inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1) inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()} generation_args = { "max_new_tokens": 25, "temperature": 0.01, "do_sample": False, } generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) # # remove input tokens generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) response = [res.strip('\n').strip() for res in response] generated_texts.extend(response) return generated_texts def remove_overlap(boxes, iou_threshold, ocr_bbox=None): assert ocr_bbox is None or isinstance(ocr_bbox, List) def box_area(box): return (box[2] - box[0]) * (box[3] - box[1]) def intersection_area(box1, box2): x1 = max(box1[0], box2[0]) y1 = max(box1[1], box2[1]) x2 = min(box1[2], box2[2]) y2 = min(box1[3], box2[3]) return max(0, x2 - x1) * max(0, y2 - y1) def IoU(box1, box2): intersection = intersection_area(box1, box2) union = box_area(box1) + box_area(box2) - intersection + 1e-6 if box_area(box1) > 0 and box_area(box2) > 0: ratio1 = intersection / box_area(box1) ratio2 = intersection / box_area(box2) else: ratio1, ratio2 = 0, 0 return max(intersection / union, ratio1, ratio2) boxes = boxes.tolist() filtered_boxes = [] if ocr_bbox: filtered_boxes.extend(ocr_bbox) # print('ocr_bbox!!!', ocr_bbox) for i, box1 in enumerate(boxes): # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j): is_valid_box = True for j, box2 in enumerate(boxes): if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): is_valid_box = False break if is_valid_box: # add the following 2 lines to include ocr bbox if ocr_bbox: if not any(IoU(box1, box3) > iou_threshold for k, box3 in enumerate(ocr_bbox)): filtered_boxes.append(box1) else: filtered_boxes.append(box1) return torch.tensor(filtered_boxes) def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image_source = Image.open(image_path).convert("RGB") image = np.asarray(image_source) image_transformed, _ = transform(image_source, None) return image, image_transformed def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float, text_padding=5, text_thickness=2, thickness=3) -> np.ndarray: """ This function annotates an image with bounding boxes and labels. Parameters: image_source (np.ndarray): The source image to be annotated. boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale logits (torch.Tensor): A tensor containing confidence scores for each bounding box. phrases (List[str]): A list of labels for each bounding box. text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web Returns: np.ndarray: The annotated image. """ h, w, _ = image_source.shape boxes = boxes * torch.Tensor([w, h, w, h]) xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy() detections = sv.Detections(xyxy=xyxy) labels = [f"{phrase}" for phrase in range(boxes.shape[0])] from util.box_annotator import BoxAnnotator box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web annotated_frame = image_source.copy() annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h)) label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)} return annotated_frame, label_coordinates def predict(model, image, caption, box_threshold, text_threshold): """ Use huggingface model to replace the original model """ model, processor = model['model'], model['processor'] device = model.device inputs = processor(images=image, text=caption, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) results = processor.post_process_grounded_object_detection( outputs, inputs.input_ids, box_threshold=box_threshold, # 0.4, text_threshold=text_threshold, # 0.3, target_sizes=[image.size[::-1]] )[0] boxes, logits, phrases = results["boxes"], results["scores"], results["labels"] return boxes, logits, phrases def predict_yolo(model, image_path, box_threshold): """ Use huggingface model to replace the original model """ # model = model['model'] result = model.predict( source=image_path, conf=box_threshold, # iou=0.5, # default 0.7 ) boxes = result[0].boxes.xyxy#.tolist() # in pixel space conf = result[0].boxes.conf phrases = [str(i) for i in range(len(boxes))] return boxes, conf, phrases def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None): """ ocr_bbox: list of xyxy format bbox """ TEXT_PROMPT = "clickable buttons on the screen" # BOX_TRESHOLD = 0.02 # 0.05/0.02 for web and 0.1 for mobile TEXT_TRESHOLD = 0.01 # 0.9 # 0.01 image_source = Image.open(img_path).convert("RGB") w, h = image_source.size # import pdb; pdb.set_trace() if False: # TODO xyxy, logits, phrases = predict(model=model, image=image_source, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD) else: xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD) xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device) image_source = np.asarray(image_source) phrases = [str(i) for i in range(len(phrases))] # annotate the image with labels h, w, _ = image_source.shape if ocr_bbox: ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h]) ocr_bbox=ocr_bbox.tolist() else: print('no ocr bbox!!!') ocr_bbox = None filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox) # get parsed icon local semantics if use_local_semantics: caption_model = caption_model_processor['model'] if 'phi3_v' in caption_model.config.model_type: parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor) else: parsed_content_icon = get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=prompt) ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] icon_start = len(ocr_text) parsed_content_icon_ls = [] for i, txt in enumerate(parsed_content_icon): parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}") parsed_content_merged = ocr_text + parsed_content_icon_ls else: ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] parsed_content_merged = ocr_text filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh") phrases = [i for i in range(len(filtered_boxes))] # draw boxes if draw_bbox_config: annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config) else: annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding) pil_img = Image.fromarray(annotated_frame) buffered = io.BytesIO() pil_img.save(buffered, format="PNG") encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii') if output_coord_in_ratio: # h, w, _ = image_source.shape label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()} assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0] return encoded_image, label_coordinates, parsed_content_merged def get_xywh(input): x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1] x, y, w, h = int(x), int(y), int(w), int(h) return x, y, w, h def get_xyxy(input): x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1] x, y, xp, yp = int(x), int(y), int(xp), int(yp) return x, y, xp, yp def get_xywh_yolo(input): x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1] x, y, w, h = int(x), int(y), int(w), int(h) return x, y, w, h def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False): if use_paddleocr: result = paddle_ocr.ocr(image_path, cls=False)[0] coord = [item[0] for item in result] text = [item[1][0] for item in result] else: # EasyOCR if easyocr_args is None: easyocr_args = {} result = reader.readtext(image_path, **easyocr_args) # print('goal filtering pred:', result[-5:]) coord = [item[0] for item in result] text = [item[1] for item in result] # read the image using cv2 if display_img: opencv_img = cv2.imread(image_path) opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR) bb = [] for item in coord: x, y, a, b = get_xywh(item) # print(x, y, a, b) bb.append((x, y, a, b)) cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2) # Display the image plt.imshow(opencv_img) else: if output_bb_format == 'xywh': bb = [get_xywh(item) for item in coord] elif output_bb_format == 'xyxy': bb = [get_xyxy(item) for item in coord] # print('bounding box!!!', bb) return (text, bb), goal_filtering