|
import streamlit as st |
|
import google.generativeai as genai |
|
import fitz |
|
import spacy |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline |
|
from transformers import AutoModelForSeq2SeqLM |
|
from docx import Document |
|
import re |
|
import dateparser |
|
from datetime import datetime |
|
import os |
|
|
|
|
|
nlp_spacy = spacy.load('en_core_web_sm') |
|
|
|
|
|
tokenizer_ner = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner") |
|
model_ner = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner") |
|
nlp_ner = pipeline('ner', model=model_ner, tokenizer=tokenizer_ner, aggregation_strategy="simple") |
|
|
|
|
|
gliner_tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/gliner-large") |
|
gliner_model = AutoModelForSeq2SeqLM.from_pretrained("DAMO-NLP-SG/gliner-large") |
|
|
|
def extract_info_with_gliner(text, info_type): |
|
input_text = f"Extract {info_type} from: {text}" |
|
input_ids = gliner_tokenizer(input_text, return_tensors="pt").input_ids |
|
outputs = gliner_model.generate(input_ids, max_length=100) |
|
return gliner_tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
class EnhancedNERPipeline: |
|
def __init__(self, nlp_spacy, nlp_ner, gliner_model, gliner_tokenizer): |
|
self.nlp_spacy = nlp_spacy |
|
self.nlp_ner = nlp_ner |
|
self.gliner_model = gliner_model |
|
self.gliner_tokenizer = gliner_tokenizer |
|
|
|
def __call__(self, text): |
|
|
|
doc = self.nlp_spacy(text) |
|
|
|
|
|
ner_results = self.nlp_ner(text) |
|
|
|
|
|
gliner_companies = extract_info_with_gliner(text, "company names") |
|
gliner_experience = extract_info_with_gliner(text, "years of experience") |
|
gliner_education = extract_info_with_gliner(text, "educational institutions") |
|
|
|
|
|
combined_entities = doc.ents + tuple(ner_results) |
|
|
|
|
|
doc._.gliner_companies = gliner_companies.split(', ') |
|
doc._.gliner_experience = gliner_experience |
|
doc._.gliner_education = gliner_education.split(', ') |
|
|
|
|
|
doc.ents = [ent for ent in combined_entities if ent.label_ not in ["ORG"]] |
|
|
|
return doc |
|
|
|
|
|
enhanced_nlp = EnhancedNERPipeline(nlp_spacy, nlp_ner, gliner_model, gliner_tokenizer) |
|
|
|
def extract_companies(doc): |
|
gliner_companies = set(doc._.gliner_companies) |
|
spacy_babelscape_companies = set([ent.text for ent in doc.ents if ent.label_ == "ORG"]) |
|
return list(gliner_companies.union(spacy_babelscape_companies)) |
|
|
|
def extract_experience(doc): |
|
gliner_experience = int(re.search(r'\d+', doc._.gliner_experience).group()) if doc._.gliner_experience else 0 |
|
spacy_experience = max([datetime.now().year - date.year for ent in doc.ents if ent.label_ == "DATE" and (date := dateparser.parse(ent.text)) and date.year <= datetime.now().year] or [0]) |
|
return max(gliner_experience, spacy_experience) |
|
|
|
def extract_education(doc): |
|
gliner_education = set(doc._.gliner_education) |
|
spacy_babelscape_education = set([ent.text for ent in doc.ents if ent.label_ == "ORG" and any(keyword in ent.text.lower() for keyword in ["university", "college", "institute", "school"])]) |
|
return list(gliner_education.union(spacy_babelscape_education)) |
|
|
|
def extract_text_from_pdf(file): |
|
pdf = fitz.open(stream=file.read(), filetype="pdf") |
|
text = "" |
|
for page in pdf: |
|
text += page.get_text() |
|
return text |
|
|
|
def extract_text_from_doc(file): |
|
doc = Document(file) |
|
return " ".join([paragraph.text for paragraph in doc.paragraphs]) |
|
|
|
def authenticate_gemini(api_key): |
|
try: |
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-pro') |
|
return model |
|
except Exception as e: |
|
st.error(f"Authentication failed: {e}") |
|
return None |
|
|
|
def generate_summary(text, model): |
|
prompt = f"Summarize the following resume:\n\n{text}\n\nProvide a brief overview of the candidate's qualifications, experience, and key skills." |
|
response = model.generate_content(prompt) |
|
return response.text |
|
|
|
def main(): |
|
st.title("Enhanced Resume Analyzer with GLinER Focus") |
|
|
|
api_key = st.text_input("Enter your Google Gemini API key", type="password") |
|
uploaded_file = st.file_uploader("Choose a PDF or DOCX file", type=["pdf", "docx"]) |
|
|
|
if uploaded_file is not None and api_key: |
|
try: |
|
model = authenticate_gemini(api_key) |
|
if model is None: |
|
return |
|
|
|
if uploaded_file.type == "application/pdf": |
|
resume_text = extract_text_from_pdf(uploaded_file) |
|
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": |
|
resume_text = extract_text_from_doc(uploaded_file) |
|
else: |
|
st.error("Unsupported file format.") |
|
return |
|
|
|
|
|
doc = enhanced_nlp(resume_text) |
|
|
|
companies = extract_companies(doc) |
|
experience = extract_experience(doc) |
|
education = extract_education(doc) |
|
|
|
|
|
phone = extract_info_with_gliner(resume_text, "phone number") |
|
email = extract_info_with_gliner(resume_text, "email address") |
|
linkedin = extract_info_with_gliner(resume_text, "LinkedIn profile") |
|
|
|
st.subheader("Extracted Information") |
|
st.write(f"**Years of Experience:** {experience}") |
|
st.write("**Companies:**", ", ".join(companies)) |
|
st.write("**Education:**", ", ".join(education)) |
|
st.write(f"**Phone Number:** {phone}") |
|
st.write(f"**Email:** {email}") |
|
st.write(f"**LinkedIn:** {linkedin}") |
|
|
|
summary = generate_summary(resume_text, model) |
|
st.subheader("Resume Summary") |
|
st.write(summary) |
|
|
|
except Exception as e: |
|
st.error(f"Error during processing: {e}") |
|
|
|
if __name__ == "__main__": |
|
main() |