bartmiller commited on
Commit
b7bf350
·
verified ·
1 Parent(s): 547800a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -2
app.py CHANGED
@@ -7,6 +7,8 @@ from sklearn.preprocessing import StandardScaler
7
  from sklearn.linear_model import LinearRegression
8
  from sklearn.metrics import mean_squared_error, r2_score
9
 
 
 
10
  # Load the California Housing dataset
11
  data = fetch_california_housing(as_frame=True)
12
  X = data.data
@@ -15,24 +17,33 @@ y = data.target
15
  # Split the dataset into training and test sets
16
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
17
 
 
18
  # Standardize features
19
  scaler = StandardScaler()
20
  X_train = scaler.fit_transform(X_train)
21
  X_test = scaler.transform(X_test)
22
 
 
23
  # Train the model
24
  model = LinearRegression()
25
  model.fit(X_train, y_train)
26
 
 
27
  # Make predictions on the test set
28
  y_pred = model.predict(X_test)
29
 
 
30
  # Evaluate the model
31
  mse = mean_squared_error(y_test, y_pred)
32
  r2 = r2_score(y_test, y_pred)
33
 
34
- print(f"Mean Squared Error: {mse:.2f}")
35
- print(f"R-squared Score: {r2:.2f}")
 
 
 
 
 
36
 
37
  sentiment_pipeline = pipeline("sentiment-analysis")
38
 
 
7
  from sklearn.linear_model import LinearRegression
8
  from sklearn.metrics import mean_squared_error, r2_score
9
 
10
+ st.write("begin of house prediction")
11
+ st.write("load dataset")
12
  # Load the California Housing dataset
13
  data = fetch_california_housing(as_frame=True)
14
  X = data.data
 
17
  # Split the dataset into training and test sets
18
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
19
 
20
+ st.write("standardize")
21
  # Standardize features
22
  scaler = StandardScaler()
23
  X_train = scaler.fit_transform(X_train)
24
  X_test = scaler.transform(X_test)
25
 
26
+ st.write("train")
27
  # Train the model
28
  model = LinearRegression()
29
  model.fit(X_train, y_train)
30
 
31
+ st.write("make predictions")
32
  # Make predictions on the test set
33
  y_pred = model.predict(X_test)
34
 
35
+ st.write("evaluate")
36
  # Evaluate the model
37
  mse = mean_squared_error(y_test, y_pred)
38
  r2 = r2_score(y_test, y_pred)
39
 
40
+ st.write(f"Mean Squared Error: {mse:.2f}")
41
+ st.write(f"R-squared Score: {r2:.2f}")
42
+
43
+ # print(f"Mean Squared Error: {mse:.2f}")
44
+ # print(f"R-squared Score: {r2:.2f}")
45
+
46
+ st.write("end of house prediction")
47
 
48
  sentiment_pipeline = pipeline("sentiment-analysis")
49