Spaces:
Running
Running
""" | |
A set of configurations used by the app. | |
""" | |
import logging | |
import os | |
from dataclasses import dataclass | |
from dotenv import load_dotenv | |
load_dotenv() | |
class GlobalConfig: | |
""" | |
A data class holding the configurations. | |
""" | |
PROVIDER_COHERE = 'co' | |
PROVIDER_GOOGLE_GEMINI = 'gg' | |
PROVIDER_HUGGING_FACE = 'hf' | |
PROVIDER_OLLAMA = 'ol' | |
VALID_PROVIDERS = { | |
PROVIDER_COHERE, | |
PROVIDER_GOOGLE_GEMINI, | |
PROVIDER_HUGGING_FACE, | |
PROVIDER_OLLAMA | |
} | |
VALID_MODELS = { | |
'[co]command-r-08-2024': { | |
'description': 'simpler, slower', | |
'max_new_tokens': 4096, | |
'paid': True, | |
}, | |
'[gg]gemini-1.5-flash-002': { | |
'description': 'faster response', | |
'max_new_tokens': 8192, | |
'paid': True, | |
}, | |
'[hf]mistralai/Mistral-7B-Instruct-v0.2': { | |
'description': 'faster, shorter', | |
'max_new_tokens': 8192, | |
'paid': False, | |
}, | |
'[hf]mistralai/Mistral-Nemo-Instruct-2407': { | |
'description': 'longer response', | |
'max_new_tokens': 10240, | |
'paid': False, | |
}, | |
} | |
LLM_PROVIDER_HELP = ( | |
'LLM provider codes:\n\n' | |
'- **[co]**: Cohere\n' | |
'- **[gg]**: Google Gemini API\n' | |
'- **[hf]**: Hugging Face Inference API\n' | |
) | |
DEFAULT_MODEL_INDEX = 2 | |
LLM_MODEL_TEMPERATURE = 0.2 | |
LLM_MODEL_MIN_OUTPUT_LENGTH = 100 | |
LLM_MODEL_MAX_INPUT_LENGTH = 400 # characters | |
HUGGINGFACEHUB_API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN', '') | |
LOG_LEVEL = 'DEBUG' | |
COUNT_TOKENS = False | |
APP_STRINGS_FILE = 'strings.json' | |
PRELOAD_DATA_FILE = 'examples/example_02.json' | |
SLIDES_TEMPLATE_FILE = 'langchain_templates/template_combined.txt' | |
INITIAL_PROMPT_TEMPLATE = 'langchain_templates/chat_prompts/initial_template_v4_two_cols_img.txt' | |
REFINEMENT_PROMPT_TEMPLATE = 'langchain_templates/chat_prompts/refinement_template_v4_two_cols_img.txt' | |
LLM_PROGRESS_MAX = 90 | |
ICONS_DIR = 'icons/png128/' | |
TINY_BERT_MODEL = 'gaunernst/bert-mini-uncased' | |
EMBEDDINGS_FILE_NAME = 'file_embeddings/embeddings.npy' | |
ICONS_FILE_NAME = 'file_embeddings/icons.npy' | |
PPTX_TEMPLATE_FILES = { | |
'Basic': { | |
'file': 'pptx_templates/Blank.pptx', | |
'caption': 'A good start (Uses [photos](https://unsplash.com/photos/AFZ-qBPEceA) by [cetteup](https://unsplash.com/@cetteup?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash) on [Unsplash](https://unsplash.com/photos/a-foggy-forest-filled-with-lots-of-trees-d3ci37Gcgxg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash)) 🟧' | |
}, | |
'Minimalist Sales Pitch': { | |
'file': 'pptx_templates/Minimalist_sales_pitch.pptx', | |
'caption': 'In high contrast ⬛' | |
}, | |
'Ion Boardroom': { | |
'file': 'pptx_templates/Ion_Boardroom.pptx', | |
'caption': 'Make some bold decisions 🟥' | |
}, | |
'Urban Monochrome': { | |
'file': 'pptx_templates/Urban_monochrome.pptx', | |
'caption': 'Marvel in a monochrome dream ⬜' | |
}, | |
} | |
# This is a long text, so not incorporated as a string in `strings.json` | |
CHAT_USAGE_INSTRUCTIONS = ( | |
'Briefly describe your topic of presentation in the textbox provided below. For example:\n' | |
'- Make a slide deck on AI.' | |
'\n\n' | |
'Subsequently, you can add follow-up instructions, e.g.:\n' | |
'- Can you add a slide on GPUs?' | |
'\n\n' | |
' You can also ask it to refine any particular slide, e.g.:\n' | |
'- Make the slide with title \'Examples of AI\' a bit more descriptive.' | |
'\n\n' | |
'Finally, click on the download button at the bottom to download the slide deck.' | |
' See this [demo video](https://youtu.be/QvAKzNKtk9k) for a brief walkthrough.\n\n' | |
'Currently, three LLMs providers and four LLMs are supported:' | |
' **Mistral 7B Instruct v0.2** and **Mistral Nemo Instruct 2407** via Hugging Face' | |
' Inference Endpoint; **Gemini 1.5 Flash** via Gemini API; and **Command R+** via Cohere' | |
' API. If one is not available, choose the other from the dropdown list. A [summary of' | |
' the supported LLMs](' | |
'https://github.com/barun-saha/slide-deck-ai/blob/main/README.md#summary-of-the-llms)' | |
' is available for reference.\n\n' | |
' SlideDeck AI does not have access to the Web, apart for searching for images relevant' | |
' to the slides. Photos are added probabilistically; transparency needs to be changed' | |
' manually, if required.\n\n' | |
'[SlideDeck AI](https://github.com/barun-saha/slide-deck-ai) is an Open-Source project,' | |
' released under the' | |
' [MIT license](https://github.com/barun-saha/slide-deck-ai?tab=MIT-1-ov-file#readme).' | |
'\n\n---\n\n' | |
'© Copyright 2023-2024 Barun Saha.\n\n' | |
) | |
logging.basicConfig( | |
level=GlobalConfig.LOG_LEVEL, | |
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
datefmt='%Y-%m-%d %H:%M:%S' | |
) | |
def get_max_output_tokens(llm_name: str) -> int: | |
""" | |
Get the max output tokens value configured for an LLM. Return a default value if not configured. | |
:param llm_name: The name of the LLM. | |
:return: Max output tokens or a default count. | |
""" | |
try: | |
return GlobalConfig.VALID_MODELS[llm_name]['max_new_tokens'] | |
except KeyError: | |
return 2048 | |