""" Streamlit app containing the UI and the application logic. """ import datetime import logging import os import pathlib import random import tempfile from typing import List, Union import httpx import huggingface_hub import json5 import ollama import requests import streamlit as st from dotenv import load_dotenv from langchain_community.chat_message_histories import StreamlitChatMessageHistory from langchain_core.messages import HumanMessage from langchain_core.prompts import ChatPromptTemplate import global_config as gcfg from global_config import GlobalConfig from helpers import llm_helper, pptx_helper, text_helper load_dotenv() RUN_IN_OFFLINE_MODE = os.getenv('RUN_IN_OFFLINE_MODE', 'False').lower() == 'true' @st.cache_data def _load_strings() -> dict: """ Load various strings to be displayed in the app. :return: The dictionary of strings. """ with open(GlobalConfig.APP_STRINGS_FILE, 'r', encoding='utf-8') as in_file: return json5.loads(in_file.read()) @st.cache_data def _get_prompt_template(is_refinement: bool) -> str: """ Return a prompt template. :param is_refinement: Whether this is the initial or refinement prompt. :return: The prompt template as f-string. """ if is_refinement: with open(GlobalConfig.REFINEMENT_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file: template = in_file.read() else: with open(GlobalConfig.INITIAL_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file: template = in_file.read() return template def are_all_inputs_valid( user_prompt: str, selected_provider: str, selected_model: str, user_key: str, ) -> bool: """ Validate user input and LLM selection. :param user_prompt: The prompt. :param selected_provider: The LLM provider. :param selected_model: Name of the model. :param user_key: User-provided API key. :return: `True` if all inputs "look" OK; `False` otherwise. """ if not text_helper.is_valid_prompt(user_prompt): handle_error( 'Not enough information provided!' ' Please be a little more descriptive and type a few words' ' with a few characters :)', False ) return False if not selected_provider or not selected_model: handle_error('No valid LLM provider and/or model name found!', False) return False if not llm_helper.is_valid_llm_provider_model(selected_provider, selected_model, user_key): handle_error( 'The LLM settings do not look correct. Make sure that an API key/access token' ' is provided if the selected LLM requires it. An API key should be 6-64 characters' ' long, only containing alphanumeric characters, hyphens, and underscores.', False ) return False return True def handle_error(error_msg: str, should_log: bool): """ Display an error message in the app. :param error_msg: The error message to be displayed. :param should_log: If `True`, log the message. """ if should_log: logger.error(error_msg) st.error(error_msg) def reset_api_key(): """ Clear API key input when a different LLM is selected from the dropdown list. """ st.session_state.api_key_input = '' APP_TEXT = _load_strings() # Session variables CHAT_MESSAGES = 'chat_messages' DOWNLOAD_FILE_KEY = 'download_file_name' IS_IT_REFINEMENT = 'is_it_refinement' logger = logging.getLogger(__name__) texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys()) captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts] with st.sidebar: # The PPT templates pptx_template = st.sidebar.radio( '1: Select a presentation template:', texts, captions=captions, horizontal=True ) if RUN_IN_OFFLINE_MODE: llm_provider_to_use = st.text_input( label='2: Enter Ollama model name to use:', help=( 'Specify a correct, locally available LLM, found by running `ollama list`, for' ' example `mistral:v0.2` and `mistral-nemo:latest`. Having an Ollama-compatible' ' and supported GPU is strongly recommended.' ) ) api_key_token: str = '' else: # The LLMs llm_provider_to_use = st.sidebar.selectbox( label='2: Select an LLM to use:', options=[f'{k} ({v["description"]})' for k, v in GlobalConfig.VALID_MODELS.items()], index=GlobalConfig.DEFAULT_MODEL_INDEX, help=GlobalConfig.LLM_PROVIDER_HELP, on_change=reset_api_key ).split(' ')[0] # The API key/access token api_key_token = st.text_input( label=( '3: Paste your API key/access token:\n\n' '*Mandatory* for Cohere and Gemini LLMs.' ' *Optional* for HF Mistral LLMs but still encouraged.\n\n' ), type='password', key='api_key_input' ) def build_ui(): """ Display the input elements for content generation. """ st.title(APP_TEXT['app_name']) st.subheader(APP_TEXT['caption']) st.markdown( '![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbarunsaha%2Fslide-deck-ai&countColor=%23263759)' # noqa: E501 ) with st.expander('Usage Policies and Limitations'): st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2']) set_up_chat_ui() def set_up_chat_ui(): """ Prepare the chat interface and related functionality. """ with st.expander('Usage Instructions'): st.markdown(GlobalConfig.CHAT_USAGE_INSTRUCTIONS) st.info(APP_TEXT['like_feedback']) st.chat_message('ai').write(random.choice(APP_TEXT['ai_greetings'])) history = StreamlitChatMessageHistory(key=CHAT_MESSAGES) prompt_template = ChatPromptTemplate.from_template( _get_prompt_template( is_refinement=_is_it_refinement() ) ) # Since Streamlit app reloads at every interaction, display the chat history # from the save session state for msg in history.messages: st.chat_message(msg.type).code(msg.content, language='json') if prompt := st.chat_input( placeholder=APP_TEXT['chat_placeholder'], max_chars=GlobalConfig.LLM_MODEL_MAX_INPUT_LENGTH ): provider, llm_name = llm_helper.get_provider_model( llm_provider_to_use, use_ollama=RUN_IN_OFFLINE_MODE ) print(f'{llm_provider_to_use=}, {provider=}, {llm_name=}, {api_key_token=}') if not are_all_inputs_valid(prompt, provider, llm_name, api_key_token): return logger.info( 'User input: %s | #characters: %d | LLM: %s', prompt, len(prompt), llm_name ) st.chat_message('user').write(prompt) if _is_it_refinement(): user_messages = _get_user_messages() user_messages.append(prompt) list_of_msgs = [ f'{idx + 1}. {msg}' for idx, msg in enumerate(user_messages) ] formatted_template = prompt_template.format( **{ 'instructions': '\n'.join(list_of_msgs), 'previous_content': _get_last_response(), } ) else: formatted_template = prompt_template.format(**{'question': prompt}) progress_bar = st.progress(0, 'Preparing to call LLM...') response = '' try: llm = llm_helper.get_langchain_llm( provider=provider, model=llm_name, max_new_tokens=gcfg.get_max_output_tokens(llm_provider_to_use), api_key=api_key_token.strip(), ) if not llm: handle_error( 'Failed to create an LLM instance! Make sure that you have selected the' ' correct model from the dropdown list and have provided correct API key' ' or access token.', False ) return for _ in llm.stream(formatted_template): response += _ # Update the progress bar with an approx progress percentage progress_bar.progress( min( len(response) / gcfg.get_max_output_tokens(llm_provider_to_use), 0.95 ), text='Streaming content...this might take a while...' ) except (httpx.ConnectError, requests.exceptions.ConnectionError): handle_error( 'A connection error occurred while streaming content from the LLM endpoint.' ' Unfortunately, the slide deck cannot be generated. Please try again later.' ' Alternatively, try selecting a different LLM from the dropdown list. If you are' ' using Ollama, make sure that Ollama is already running on your system.', True ) return except huggingface_hub.errors.ValidationError as ve: handle_error( f'An error occurred while trying to generate the content: {ve}' '\nPlease try again with a significantly shorter input text.', True ) return except ollama.ResponseError: handle_error( f'The model `{llm_name}` is unavailable with Ollama on your system.' f' Make sure that you have provided the correct LLM name or pull it using' f' `ollama pull {llm_name}`. View LLMs available locally by running `ollama list`.', True ) return except Exception as ex: handle_error( f'An unexpected error occurred while generating the content: {ex}' '\nPlease try again later, possibly with different inputs.' ' Alternatively, try selecting a different LLM from the dropdown list.' ' If you are using Cohere or Gemini models, make sure that you have provided' ' a correct API key.', True ) return history.add_user_message(prompt) history.add_ai_message(response) # The content has been generated as JSON # There maybe trailing ``` at the end of the response -- remove them # To be careful: ``` may be part of the content as well when code is generated response = text_helper.get_clean_json(response) logger.info( 'Cleaned JSON length: %d', len(response) ) # Now create the PPT file progress_bar.progress( GlobalConfig.LLM_PROGRESS_MAX, text='Finding photos online and generating the slide deck...' ) progress_bar.progress(1.0, text='Done!') st.chat_message('ai').code(response, language='json') if path := generate_slide_deck(response): _display_download_button(path) logger.info( '#messages in history / 2: %d', len(st.session_state[CHAT_MESSAGES]) / 2 ) def generate_slide_deck(json_str: str) -> Union[pathlib.Path, None]: """ Create a slide deck and return the file path. In case there is any error creating the slide deck, the path may be to an empty file. :param json_str: The content in *valid* JSON format. :return: The path to the .pptx file or `None` in case of error. """ try: parsed_data = json5.loads(json_str) except ValueError: handle_error( 'Encountered error while parsing JSON...will fix it and retry', True ) try: parsed_data = json5.loads(text_helper.fix_malformed_json(json_str)) except ValueError: handle_error( 'Encountered an error again while fixing JSON...' 'the slide deck cannot be created, unfortunately ☹' '\nPlease try again later.', True ) return None except RecursionError: handle_error( 'Encountered a recursion error while parsing JSON...' 'the slide deck cannot be created, unfortunately ☹' '\nPlease try again later.', True ) return None except Exception: handle_error( 'Encountered an error while parsing JSON...' 'the slide deck cannot be created, unfortunately ☹' '\nPlease try again later.', True ) return None if DOWNLOAD_FILE_KEY in st.session_state: path = pathlib.Path(st.session_state[DOWNLOAD_FILE_KEY]) else: temp = tempfile.NamedTemporaryFile(delete=False, suffix='.pptx') path = pathlib.Path(temp.name) st.session_state[DOWNLOAD_FILE_KEY] = str(path) if temp: temp.close() try: logger.debug('Creating PPTX file: %s...', st.session_state[DOWNLOAD_FILE_KEY]) pptx_helper.generate_powerpoint_presentation( parsed_data, slides_template=pptx_template, output_file_path=path ) except Exception as ex: st.error(APP_TEXT['content_generation_error']) logger.error('Caught a generic exception: %s', str(ex)) return path def _is_it_refinement() -> bool: """ Whether it is the initial prompt or a refinement. :return: True if it is the initial prompt; False otherwise. """ if IS_IT_REFINEMENT in st.session_state: return True if len(st.session_state[CHAT_MESSAGES]) >= 2: # Prepare for the next call st.session_state[IS_IT_REFINEMENT] = True return True return False def _get_user_messages() -> List[str]: """ Get a list of user messages submitted until now from the session state. :return: The list of user messages. """ return [ msg.content for msg in st.session_state[CHAT_MESSAGES] if isinstance(msg, HumanMessage) ] def _get_last_response() -> str: """ Get the last response generated by AI. :return: The response text. """ return st.session_state[CHAT_MESSAGES][-1].content def _display_messages_history(view_messages: st.expander): """ Display the history of messages. :param view_messages: The list of AI and Human messages. """ with view_messages: view_messages.json(st.session_state[CHAT_MESSAGES]) def _display_download_button(file_path: pathlib.Path): """ Display a download button to download a slide deck. :param file_path: The path of the .pptx file. """ with open(file_path, 'rb') as download_file: st.download_button( 'Download PPTX file ⬇️', data=download_file, file_name='Presentation.pptx', key=datetime.datetime.now() ) def main(): """ Trigger application run. """ build_ui() if __name__ == '__main__': main()