Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import numpy as np
|
|
5 |
|
6 |
# Load your custom regression model
|
7 |
model_path = "pokemon_transferlearning.keras"
|
8 |
-
|
9 |
model = tf.keras.models.load_model(model_path)
|
10 |
|
11 |
labels = ['Porygon', 'Seel', 'Vaporeon']
|
@@ -14,11 +13,13 @@ labels = ['Porygon', 'Seel', 'Vaporeon']
|
|
14 |
def predict_regression(image):
|
15 |
# Preprocess image
|
16 |
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
17 |
-
image = image.resize((150, 150)).convert('
|
18 |
image = np.array(image)
|
19 |
-
|
|
|
|
|
20 |
# Predict
|
21 |
-
prediction = model.predict(image
|
22 |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
23 |
return confidences
|
24 |
|
@@ -29,5 +30,5 @@ interface = gr.Interface(fn=predict_regression,
|
|
29 |
inputs=input_image,
|
30 |
outputs=gr.Label(),
|
31 |
examples=["images/porygon.png", "images/seel.jpg", "images/vaporeon.png"],
|
32 |
-
description="A simple
|
33 |
-
interface.launch()
|
|
|
5 |
|
6 |
# Load your custom regression model
|
7 |
model_path = "pokemon_transferlearning.keras"
|
|
|
8 |
model = tf.keras.models.load_model(model_path)
|
9 |
|
10 |
labels = ['Porygon', 'Seel', 'Vaporeon']
|
|
|
13 |
def predict_regression(image):
|
14 |
# Preprocess image
|
15 |
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
16 |
+
image = image.resize((150, 150)).convert('RGB') # Resize the image to 150x150 and convert it to RGB
|
17 |
image = np.array(image)
|
18 |
+
image = image / 255.0 # Normalize image to [0, 1] range
|
19 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
20 |
+
|
21 |
# Predict
|
22 |
+
prediction = model.predict(image) # Assuming single regression value
|
23 |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
24 |
return confidences
|
25 |
|
|
|
30 |
inputs=input_image,
|
31 |
outputs=gr.Label(),
|
32 |
examples=["images/porygon.png", "images/seel.jpg", "images/vaporeon.png"],
|
33 |
+
description="A simple MLP classification model for Pokemon classification.")
|
34 |
+
interface.launch()
|