Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,46 +22,19 @@ def predict_bmwX(image):
|
|
22 |
# Apply softmax to get probabilities for each class
|
23 |
prediction = tf.nn.softmax(prediction)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
borderColie = np.round(float(prediction[0][4]), 2)
|
31 |
-
bostonTerrier = np.round(float(prediction[0][5]), 2)
|
32 |
-
chineseCrested = np.round(float(prediction[0][6]), 2)
|
33 |
-
cocker = np.round(float(prediction[0][7]), 2)
|
34 |
-
corgi = np.round(float(prediction[0][8]), 2)
|
35 |
-
dingo = np.round(float(prediction[0][9]), 2)
|
36 |
-
frenchBulldog = np.round(float(prediction[0][10]), 2)
|
37 |
-
germanShepard = np.round(float(prediction[0][11]), 2)
|
38 |
-
goldenRetriever = np.round(float(prediction[0][12]), 2)
|
39 |
-
pitBull = np.round(float(prediction[0][13]), 2)
|
40 |
-
rottweiler = np.round(float(prediction[0][14]), 2)
|
41 |
-
irishSpaniel = np.round(float(prediction[0][15]), 2)
|
42 |
-
labrador = np.round(float(prediction[0][16]), 2)
|
43 |
-
maltese = np.round(float(prediction[0][17]), 2)
|
44 |
-
newfoundland = np.round(float(prediction[0][18]), 2)
|
45 |
-
pomeranian = np.round(float(prediction[0][19]), 2)
|
46 |
-
poodle = np.round(float(prediction[0][20]), 2)
|
47 |
-
rhodesian = np.round(float(prediction[0][21]), 2)
|
48 |
-
saintBernard = np.round(float(prediction[0][22]), 2)
|
49 |
-
schnauzer = np.round(float(prediction[0][23]), 2)
|
50 |
-
scotchTerrier = np.round(float(prediction[0][24]), 2)
|
51 |
-
sharPei = np.round(float(prediction[0][25]), 2)
|
52 |
-
shibaInu = np.round(float(prediction[0][26]), 2)
|
53 |
-
siberianHusky = np.round(float(prediction[0][27]), 2)
|
54 |
-
yorkie = np.round(float(prediction[0][28]), 2)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
return
|
58 |
-
'Border Collie': borderColie, 'Boston Terrier': bostonTerrier, 'Chinese Crested': chineseCrested, 'Cocker': cocker,
|
59 |
-
'Corgi': corgi, 'Dingo': dingo, 'French Bulldog': frenchBulldog, 'German Shepard': germanShepard,
|
60 |
-
'GoldenRetriever': goldenRetriever, 'Pit Bull': pitBull, 'Rottweiler': rottweiler, 'Irish Spaniel': irishSpaniel,
|
61 |
-
'Labrador': labrador, 'Maltese': maltese, 'Newfoundland': newfoundland, 'Pomeranian': pomeranian,
|
62 |
-
'Poodle': poodle, 'Rhodesian': rhodesian, 'Saint Bernard': saintBernard, 'Schnauzer': schnauzer,
|
63 |
-
'Scotch Terrier': scotchTerrier, 'Shar Pei': sharPei, 'Shiba Inu': shibaInu, 'Siberian Husky': siberianHusky,
|
64 |
-
'Yorkie': yorkie}
|
65 |
|
66 |
|
67 |
input_image = gr.Image()
|
@@ -69,5 +42,5 @@ iface = gr.Interface(
|
|
69 |
fn=predict_bmwX,
|
70 |
inputs=input_image,
|
71 |
outputs=gr.Label(),
|
72 |
-
description="A simple
|
73 |
-
iface.launch(share=True)
|
|
|
22 |
# Apply softmax to get probabilities for each class
|
23 |
prediction = tf.nn.softmax(prediction)
|
24 |
|
25 |
+
# Define class names
|
26 |
+
class_names = ['Afghan', 'African Wild Dog', 'Beagle', 'Blenheim', 'Border Collie', 'Boston Terrier', 'Chinese Crested',
|
27 |
+
'Cocker', 'Corgi', 'Dingo', 'French Bulldog', 'German Shepard', 'Golden Retriever', 'Pit Bull',
|
28 |
+
'Rottweiler', 'Irish Spaniel', 'Labrador', 'Maltese', 'Newfoundland', 'Pomeranian', 'Poodle',
|
29 |
+
'Rhodesian', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar Pei', 'Shiba Inu', 'Siberian Husky', 'Yorkie']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Create a dictionary with the probabilities for each dog breed
|
32 |
+
prediction_dict = {class_names[i]: np.round(float(prediction[0][i]), 2) for i in range(len(class_names))}
|
33 |
+
|
34 |
+
# Sort the dictionary by value in descending order and get the top 3 classes
|
35 |
+
top_3 = dict(sorted(prediction_dict.items(), key=lambda item: item[1], reverse=True)[:3])
|
36 |
|
37 |
+
return top_3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
input_image = gr.Image()
|
|
|
42 |
fn=predict_bmwX,
|
43 |
inputs=input_image,
|
44 |
outputs=gr.Label(),
|
45 |
+
description="A simple MLP classification model for image classification using the MNIST dataset.")
|
46 |
+
iface.launch(share=True)
|