bauckluc commited on
Commit
8dca2bc
·
verified ·
1 Parent(s): a4085fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -40
app.py CHANGED
@@ -22,46 +22,19 @@ def predict_bmwX(image):
22
  # Apply softmax to get probabilities for each class
23
  prediction = tf.nn.softmax(prediction)
24
 
25
- # Create a dictionary with the probabilities for each Pokemon
26
- afghan = np.round(float(prediction[0][0]), 2)
27
- africanWildDog = np.round(float(prediction[0][1]), 2)
28
- beagle = np.round(float(prediction[0][2]), 2)
29
- blenheim = np.round(float(prediction[0][3]), 2)
30
- borderColie = np.round(float(prediction[0][4]), 2)
31
- bostonTerrier = np.round(float(prediction[0][5]), 2)
32
- chineseCrested = np.round(float(prediction[0][6]), 2)
33
- cocker = np.round(float(prediction[0][7]), 2)
34
- corgi = np.round(float(prediction[0][8]), 2)
35
- dingo = np.round(float(prediction[0][9]), 2)
36
- frenchBulldog = np.round(float(prediction[0][10]), 2)
37
- germanShepard = np.round(float(prediction[0][11]), 2)
38
- goldenRetriever = np.round(float(prediction[0][12]), 2)
39
- pitBull = np.round(float(prediction[0][13]), 2)
40
- rottweiler = np.round(float(prediction[0][14]), 2)
41
- irishSpaniel = np.round(float(prediction[0][15]), 2)
42
- labrador = np.round(float(prediction[0][16]), 2)
43
- maltese = np.round(float(prediction[0][17]), 2)
44
- newfoundland = np.round(float(prediction[0][18]), 2)
45
- pomeranian = np.round(float(prediction[0][19]), 2)
46
- poodle = np.round(float(prediction[0][20]), 2)
47
- rhodesian = np.round(float(prediction[0][21]), 2)
48
- saintBernard = np.round(float(prediction[0][22]), 2)
49
- schnauzer = np.round(float(prediction[0][23]), 2)
50
- scotchTerrier = np.round(float(prediction[0][24]), 2)
51
- sharPei = np.round(float(prediction[0][25]), 2)
52
- shibaInu = np.round(float(prediction[0][26]), 2)
53
- siberianHusky = np.round(float(prediction[0][27]), 2)
54
- yorkie = np.round(float(prediction[0][28]), 2)
55
 
 
 
 
 
 
56
 
57
- return {'Afghan': afghan, 'African Wild Dog': africanWildDog, 'Beagle': beagle, 'Blenheim': blenheim,
58
- 'Border Collie': borderColie, 'Boston Terrier': bostonTerrier, 'Chinese Crested': chineseCrested, 'Cocker': cocker,
59
- 'Corgi': corgi, 'Dingo': dingo, 'French Bulldog': frenchBulldog, 'German Shepard': germanShepard,
60
- 'GoldenRetriever': goldenRetriever, 'Pit Bull': pitBull, 'Rottweiler': rottweiler, 'Irish Spaniel': irishSpaniel,
61
- 'Labrador': labrador, 'Maltese': maltese, 'Newfoundland': newfoundland, 'Pomeranian': pomeranian,
62
- 'Poodle': poodle, 'Rhodesian': rhodesian, 'Saint Bernard': saintBernard, 'Schnauzer': schnauzer,
63
- 'Scotch Terrier': scotchTerrier, 'Shar Pei': sharPei, 'Shiba Inu': shibaInu, 'Siberian Husky': siberianHusky,
64
- 'Yorkie': yorkie}
65
 
66
 
67
  input_image = gr.Image()
@@ -69,5 +42,5 @@ iface = gr.Interface(
69
  fn=predict_bmwX,
70
  inputs=input_image,
71
  outputs=gr.Label(),
72
- description="A simple mlp classification model for image classification using the mnist dataset.")
73
- iface.launch(share=True)
 
22
  # Apply softmax to get probabilities for each class
23
  prediction = tf.nn.softmax(prediction)
24
 
25
+ # Define class names
26
+ class_names = ['Afghan', 'African Wild Dog', 'Beagle', 'Blenheim', 'Border Collie', 'Boston Terrier', 'Chinese Crested',
27
+ 'Cocker', 'Corgi', 'Dingo', 'French Bulldog', 'German Shepard', 'Golden Retriever', 'Pit Bull',
28
+ 'Rottweiler', 'Irish Spaniel', 'Labrador', 'Maltese', 'Newfoundland', 'Pomeranian', 'Poodle',
29
+ 'Rhodesian', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar Pei', 'Shiba Inu', 'Siberian Husky', 'Yorkie']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ # Create a dictionary with the probabilities for each dog breed
32
+ prediction_dict = {class_names[i]: np.round(float(prediction[0][i]), 2) for i in range(len(class_names))}
33
+
34
+ # Sort the dictionary by value in descending order and get the top 3 classes
35
+ top_3 = dict(sorted(prediction_dict.items(), key=lambda item: item[1], reverse=True)[:3])
36
 
37
+ return top_3
 
 
 
 
 
 
 
38
 
39
 
40
  input_image = gr.Image()
 
42
  fn=predict_bmwX,
43
  inputs=input_image,
44
  outputs=gr.Label(),
45
+ description="A simple MLP classification model for image classification using the MNIST dataset.")
46
+ iface.launch(share=True)