Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,26 @@ import tensorflow as tf
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
|
6 |
-
|
7 |
model_path = "DogClassifier2.1.keras"
|
8 |
model = tf.keras.models.load_model(model_path)
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
'Bearded Collie', 'Bermaise', 'Bichon Frise', 'Blenheim', 'Bloodhound', 'Bluetick', 'Border Collie', 'Borzoi',
|
12 |
'Boston Terrier', 'Boxer', 'Bull Mastiff', 'Bull Terrier', 'Bulldog', 'Cairn', 'Chihuahua', 'Chinese Crested',
|
13 |
'Chow', 'Clumber','Cockapoo', 'Cocker', 'Collie', 'Corgi', 'Coyote', 'Dalmation', 'Dhole', 'Dingo', 'Doberman',
|
@@ -16,22 +31,19 @@ labels = ['Afghan', 'African Wild Dog', 'Airedale', 'American Hairless', 'Americ
|
|
16 |
'Lhasa', 'Malinois', 'Maltese', 'Maltese', 'Mex Hairless', 'Newfoundland', 'Pekinese', 'Pit Bull', 'Pomeranian',
|
17 |
'Poodle', 'Pug', 'Rhodesian', 'Rottweiler', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar_Pei',
|
18 |
'Shiba Inu', 'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
prediction = model.predict(image[None, ...]) # Assuming single regression value
|
28 |
-
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
29 |
-
return confidences
|
30 |
|
31 |
|
32 |
input_image = gr.Image()
|
33 |
iface = gr.Interface(
|
34 |
-
fn=
|
35 |
inputs=input_image,
|
36 |
outputs=gr.Label(),
|
37 |
description="A simple MLP classification model for image classification using the MNIST dataset.")
|
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
|
|
|
6 |
model_path = "DogClassifier2.1.keras"
|
7 |
model = tf.keras.models.load_model(model_path)
|
8 |
|
9 |
+
# Define the core prediction function
|
10 |
+
def predict_bmwX(image):
|
11 |
+
# Preprocess image
|
12 |
+
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
13 |
+
image = image.convert("RGB") # Ensure the image is in RGB format
|
14 |
+
image = image.resize((150, 150)) # Resize the image to 150x150
|
15 |
+
image = np.array(image)
|
16 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
17 |
+
|
18 |
+
# Predict
|
19 |
+
prediction = model.predict(image)
|
20 |
+
|
21 |
+
# Apply softmax to get probabilities for each class
|
22 |
+
prediction = tf.nn.softmax(prediction)
|
23 |
+
|
24 |
+
# Define class names
|
25 |
+
class_names = ['Afghan', 'African Wild Dog', 'Airedale', 'American Hairless', 'American Spaniel', 'Basenji', 'Basset', 'Beagle',
|
26 |
'Bearded Collie', 'Bermaise', 'Bichon Frise', 'Blenheim', 'Bloodhound', 'Bluetick', 'Border Collie', 'Borzoi',
|
27 |
'Boston Terrier', 'Boxer', 'Bull Mastiff', 'Bull Terrier', 'Bulldog', 'Cairn', 'Chihuahua', 'Chinese Crested',
|
28 |
'Chow', 'Clumber','Cockapoo', 'Cocker', 'Collie', 'Corgi', 'Coyote', 'Dalmation', 'Dhole', 'Dingo', 'Doberman',
|
|
|
31 |
'Lhasa', 'Malinois', 'Maltese', 'Maltese', 'Mex Hairless', 'Newfoundland', 'Pekinese', 'Pit Bull', 'Pomeranian',
|
32 |
'Poodle', 'Pug', 'Rhodesian', 'Rottweiler', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar_Pei',
|
33 |
'Shiba Inu', 'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
|
34 |
+
|
35 |
+
# Create a dictionary with the probabilities for each dog breed
|
36 |
+
prediction_dict = {class_names[i]: np.round(float(prediction[0][i]), 2) for i in range(len(class_names))}
|
37 |
+
|
38 |
+
# Sort the dictionary by value in descending order and get the top 3 classes
|
39 |
+
sorted_predictions = dict(sorted(prediction_dict.items(), key=lambda item: item[1], reverse=True))
|
40 |
+
|
41 |
+
return sorted_predictions
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
input_image = gr.Image()
|
45 |
iface = gr.Interface(
|
46 |
+
fn=predict_bmwX,
|
47 |
inputs=input_image,
|
48 |
outputs=gr.Label(),
|
49 |
description="A simple MLP classification model for image classification using the MNIST dataset.")
|