Spaces:
Runtime error
Runtime error
File size: 1,605 Bytes
503c7ba f042ac5 420f9d2 503c7ba f5f472c 503c7ba 656a7fb afa7f02 656a7fb afa7f02 503c7ba 656a7fb afa7f02 503c7ba f5f472c 503c7ba bec246f 656a7fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
# Load your custom regression model
model_path = "pokemon_transferlearning2.keras"
model = tf.keras.models.load_model(model_path)
labels = ['Porygon', 'Seel', 'Vaporeon']
# Define regression function
def predict_regression(image):
# Preprocess image
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
image = image.resize((150, 150)).convert('RGB') # Resize the image to 150x150 and convert it to RGB
image = np.array(image) / 255.0 # Normalize image to [0, 1] range
image = np.expand_dims(image, axis=0) # Add batch dimension
# Print statements for debugging
print(f"Image shape (after preprocessing): {image.shape}")
print(f"Image data (sample): {image[0, :5, :5, 0]}") # Print a small sample of the data for inspection
# Predict
prediction = model.predict(image) # Assuming single regression value
print(f"Raw model prediction: {prediction}")
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
return confidences
# Create Gradio interface
input_image = gr.Image()
output_text = gr.Textbox(label="Predicted Pokemon")
interface = gr.Interface(fn=predict_regression,
inputs=input_image,
outputs=gr.Label(),
examples=["images/porygon.png", "images/seel.jpg", "images/vaporeon.png"],
description="A simple MLP classification model for Pokemon classification.")
interface.launch()
|