import gradio as gr import tensorflow as tf from PIL import Image import numpy as np # Load your custom regression model model_path = "pokemon_transferlearning2.keras" model = tf.keras.models.load_model(model_path) labels = ['Porygon', 'Seel', 'Vaporeon'] # Define regression function def predict_regression(image): # Preprocess image image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)).convert('RGB') # Resize the image to 150x150 and convert it to RGB image = np.array(image) / 255.0 # Normalize image to [0, 1] range image = np.expand_dims(image, axis=0) # Add batch dimension # Print statements for debugging print(f"Image shape (after preprocessing): {image.shape}") print(f"Image data (sample): {image[0, :5, :5, 0]}") # Print a small sample of the data for inspection # Predict prediction = model.predict(image) # Assuming single regression value print(f"Raw model prediction: {prediction}") confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} return confidences # Create Gradio interface input_image = gr.Image() output_text = gr.Textbox(label="Predicted Pokemon") interface = gr.Interface(fn=predict_regression, inputs=input_image, outputs=gr.Label(), examples=["images/porygon.png", "images/seel.jpg", "images/vaporeon.png"], description="A simple MLP classification model for Pokemon classification.") interface.launch()