Spaces:
Running
Running
Show raw output with confidence values + fix layout
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ import gradio as gr
|
|
23 |
|
24 |
class App:
|
25 |
|
26 |
-
title = 'Scene Text Recognition with
|
27 |
models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr']
|
28 |
|
29 |
def __init__(self):
|
@@ -49,19 +49,22 @@ class App:
|
|
49 |
image = self._preprocess(image.convert('RGB')).unsqueeze(0)
|
50 |
# Greedy decoding
|
51 |
pred = model(image).softmax(-1)
|
52 |
-
label,
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
def main():
|
57 |
-
|
58 |
app = App()
|
59 |
|
60 |
-
with gr.Blocks(analytics_enabled=False, title=app.title) as demo:
|
61 |
-
gr.Markdown("""
|
62 |
<div align="center">
|
63 |
|
64 |
-
#
|
65 |
[![GitHub](https://img.shields.io/badge/baudm-parseq-blue?logo=github)](https://github.com/baudm/parseq)
|
66 |
|
67 |
</div>
|
@@ -71,20 +74,22 @@ def main():
|
|
71 |
2. Upload your own image, choose from the examples below, or draw on the canvas.
|
72 |
3. Click **Read Image** or **Read Drawing**.
|
73 |
""")
|
74 |
-
model_name = gr.Radio(app.models, value=app.models[0], label='
|
75 |
-
with gr.Row():
|
76 |
-
image_upload = gr.Image(type='pil', source='upload', label='Image')
|
77 |
-
image_canvas = gr.Image(type='pil', source='canvas', label='Drawing')
|
78 |
with gr.Row():
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
output = gr.Textbox(max_lines=1, label='Model output')
|
|
|
83 |
|
84 |
gr.Examples(glob.glob('demo_images/*.*'), inputs=image_upload)
|
85 |
|
86 |
-
read_upload.click(app, inputs=[model_name, image_upload], outputs=output)
|
87 |
-
read_canvas.click(app, inputs=[model_name, image_canvas], outputs=output)
|
88 |
|
89 |
demo.launch()
|
90 |
|
|
|
23 |
|
24 |
class App:
|
25 |
|
26 |
+
title = 'Scene Text Recognition with<br/>Permuted Autoregressive Sequence Models'
|
27 |
models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr']
|
28 |
|
29 |
def __init__(self):
|
|
|
49 |
image = self._preprocess(image.convert('RGB')).unsqueeze(0)
|
50 |
# Greedy decoding
|
51 |
pred = model(image).softmax(-1)
|
52 |
+
label, _ = model.tokenizer.decode(pred)
|
53 |
+
raw_label, raw_confidence = model.tokenizer.decode(pred, raw=True)
|
54 |
+
# Format confidence values
|
55 |
+
max_len = 25 if model_name == 'crnn' else len(label[0]) + 1
|
56 |
+
conf = list(map('{:0.1f}'.format, raw_confidence[0][:max_len].tolist()))
|
57 |
+
return label[0], [raw_label[0][:max_len], conf]
|
58 |
|
59 |
|
60 |
def main():
|
|
|
61 |
app = App()
|
62 |
|
63 |
+
with gr.Blocks(analytics_enabled=False, title=app.title.replace('<br/>', ' ')) as demo:
|
64 |
+
gr.Markdown(f"""
|
65 |
<div align="center">
|
66 |
|
67 |
+
# {app.title}
|
68 |
[![GitHub](https://img.shields.io/badge/baudm-parseq-blue?logo=github)](https://github.com/baudm/parseq)
|
69 |
|
70 |
</div>
|
|
|
74 |
2. Upload your own image, choose from the examples below, or draw on the canvas.
|
75 |
3. Click **Read Image** or **Read Drawing**.
|
76 |
""")
|
77 |
+
model_name = gr.Radio(app.models, value=app.models[0], label='The STR model to use')
|
|
|
|
|
|
|
78 |
with gr.Row():
|
79 |
+
with gr.Column():
|
80 |
+
image_upload = gr.Image(type='pil', source='upload', label='Image')
|
81 |
+
read_upload = gr.Button('Read Image')
|
82 |
+
with gr.Column():
|
83 |
+
image_canvas = gr.Image(type='pil', source='canvas', label='Drawing')
|
84 |
+
read_canvas = gr.Button('Read Drawing')
|
85 |
|
86 |
output = gr.Textbox(max_lines=1, label='Model output')
|
87 |
+
raw_output = gr.Dataframe(row_count=2, col_count=0, label='Raw output with confidence values (interval: [0, 1], [B]: BOS or BLANK token, [E]: EOS token)')
|
88 |
|
89 |
gr.Examples(glob.glob('demo_images/*.*'), inputs=image_upload)
|
90 |
|
91 |
+
read_upload.click(app, inputs=[model_name, image_upload], outputs=[output, raw_output])
|
92 |
+
read_canvas.click(app, inputs=[model_name, image_canvas], outputs=[output, raw_output])
|
93 |
|
94 |
demo.launch()
|
95 |
|