# Scene Text Recognition Model Hub # Copyright 2022 Darwin Bautista # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import torch from torchvision import transforms as T import gradio as gr class App: title = 'Scene Text Recognition with
Permuted Autoregressive Sequence Models' models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr'] def __init__(self): self._model_cache = {} self._preprocess = T.Compose([ T.Resize((32, 128), T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(0.5, 0.5) ]) def _get_model(self, name): if name in self._model_cache: return self._model_cache[name] model = torch.hub.load('baudm/parseq', name, pretrained=True).eval() model.freeze() self._model_cache[name] = model return model def __call__(self, model_name, image): if image is None: return '', [] model = self._get_model(model_name) image = self._preprocess(image.convert('RGB')).unsqueeze(0) # Greedy decoding pred = model(image).softmax(-1) label, _ = model.tokenizer.decode(pred) raw_label, raw_confidence = model.tokenizer.decode(pred, raw=True) # Format confidence values max_len = 25 if model_name == 'crnn' else len(label[0]) + 1 conf = list(map('{:0.1f}'.format, raw_confidence[0][:max_len].tolist())) return label[0], [raw_label[0][:max_len], conf] def main(): app = App() with gr.Blocks(analytics_enabled=False, title=app.title.replace('
', ' ')) as demo: gr.Markdown(f"""
# {app.title} [![GitHub](https://img.shields.io/badge/baudm-parseq-blue?logo=github)](https://github.com/baudm/parseq)
To use this interactive demo for PARSeq and reproduced models: 1. Select which model you want to use. 2. Upload your own image, choose from the examples below, or draw on the canvas. 3. Click **Read Image** or **Read Drawing**. *NOTE*: None of these models were trained on handwritten text datasets. """) model_name = gr.Radio(app.models, value=app.models[0], label='The STR model to use') with gr.Row(): with gr.Column(): image_upload = gr.Image(type='pil', source='upload', label='Image') read_upload = gr.Button('Read Image') with gr.Column(): image_canvas = gr.Image(type='pil', source='canvas', label='Drawing') read_canvas = gr.Button('Read Drawing') output = gr.Textbox(max_lines=1, label='Model output') raw_output = gr.Dataframe(row_count=2, col_count=0, label='Raw output with confidence values (interval: [0, 1], [B]: BOS or BLANK token, [E]: EOS token)') gr.Examples(glob.glob('demo_images/*.*'), inputs=image_upload) read_upload.click(app, inputs=[model_name, image_upload], outputs=[output, raw_output]) read_canvas.click(app, inputs=[model_name, image_canvas], outputs=[output, raw_output]) demo.launch() if __name__ == '__main__': main()