# Scene Text Recognition Model Hub # Copyright 2022 Darwin Bautista # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from torchvision import transforms as T import gradio as gr class App: title = 'Scene Text Recognition with Permuted Autoregressive Sequence Models' models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr'] def __init__(self): self._model_cache = {} self._preprocess = T.Compose([ T.Resize((32, 128), T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(0.5, 0.5) ]) def _get_model(self, name): if name in self._model_cache: return self._model_cache[name] model = torch.hub.load('baudm/parseq', name, pretrained=True).eval() model.freeze() self._model_cache[name] = model return model def __call__(self, model_name, image): model = self._get_model(model_name) image = self._preprocess(image.convert('RGB')).unsqueeze(0) # Greedy decoding pred = model(image).softmax(-1) label, confidence = model.tokenizer.decode(pred) return label[0] def main(): app = App() with gr.Blocks(analytics_enabled=False, title=app.title) as demo: gr.Markdown("""