import sys sys.path.insert(0,'stable_diffusion') import gradio as gr from train_esd import train_esd from convertModels import convert_ldm_unet_checkpoint, create_unet_diffusers_config from omegaconf import OmegaConf from StableDiffuser import StableDiffuser from diffusers import UNet2DConditionModel ckpt_path = "stable-diffusion/models/ldm/sd-v1-4-full-ema.ckpt" config_path = "stable-diffusion/configs/stable-diffusion/v1-inference.yaml" diffusers_config_path = "stable-diffusion/config.json" class Demo: def __init__(self) -> None: demo = self.layout() demo.launch() def layout(self): with gr.Blocks() as demo: with gr.Row(): with gr.Column() as training_column: self.prompt_input = gr.Text( placeholder="Enter prompt...", label="Prompt", info="Prompt corresponding to concept to erase" ) self.train_method_input = gr.Dropdown( choices=['noxattn', 'selfattn', 'xattn', 'full'], value='xattn', label='Train Method', info='Method of training' ) self.neg_guidance_input = gr.Number( value=1, label="Negative Guidance", info='Guidance of negative training used to train' ) self.iterations_input = gr.Number( value=1000, precision=0, label="Iterations", info='iterations used to train' ) self.lr_input = gr.Number( value=1e-5, label="Learning Rate", info='Learning rate used to train' ) self.train_button = gr.Button( value="Train", ) self.train_button.click(self.train, inputs = [ self.prompt_input, self.train_method_input, self.neg_guidance_input, self.iterations_input, self.lr_input ] ) with gr.Column() as inference_column: with gr.Row(): self.prompt_input_infr = gr.Text( placeholder="Enter prompt...", label="Prompt", info="Prompt corresponding to concept to erase" ) with gr.Row(): self.image_new = gr.Image( label="New Image", interactive=False ) self.image_orig = gr.Image( label="Orig Image", interactive=False ) with gr.Row(): self.infr_button = gr.Button( value="Generate", ) self.infr_button.click(self.inference, inputs = [ self.prompt_input_infr, ], outputs=[ self.image_new, self.image_orig ] ) return demo def train(self, prompt, train_method, neg_guidance, iterations, lr): model_orig, model_edited = train_esd(prompt, train_method, 3, neg_guidance, iterations, lr, config_path, ckpt_path, diffusers_config_path, ['cuda', 'cuda'], gr.Progress() ) original_config = OmegaConf.load(config_path) original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = 4 unet_config = create_unet_diffusers_config(original_config, image_size=512) model_edited_sd = convert_ldm_unet_checkpoint(model_edited.state_dict(), unet_config) model_orig_sd = convert_ldm_unet_checkpoint(model_orig.state_dict(), unet_config) self.init_inference(model_edited_sd, model_orig_sd, unet_config) def init_inference(self, model_edited_sd, model_orig_sd, unet_config): self.model_edited_sd = model_edited_sd self.model_orig_sd = model_orig_sd self.diffuser = StableDiffuser(42) self.diffuser.unet = UNet2DConditionModel(**unet_config) self.diffuser.to('cuda') def inference(self, prompt): self.diffuser.unet.load_state_dict(self.model_orig_sd) images = self.diffuser( prompt, n_steps=50, reseed=True ) orig_image = images[0][0] self.diffuser.unet.load_state_dict(self.model_edited_sd) images = self.diffuser( prompt, n_steps=50, reseed=True ) edited_image = images[0][0] return edited_image, orig_image