commit demo to space
Browse files- cat_with_food.png +0 -0
- config.py +24 -0
- demo.py +56 -0
- dog_with_frisbee.png +0 -0
- linear_mapping.py +278 -0
- main.py +116 -0
- pytorch_model.bin +3 -0
- stop_sign.png +0 -0
- two_bear.png +0 -0
cat_with_food.png
ADDED
config.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
PREFIX_MAP = {
|
4 |
+
"openai/clip-vit-base-patch32": 50,
|
5 |
+
"openai/clip-vit-large-patch14": 257
|
6 |
+
}
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class LinearMappingConfig:
|
11 |
+
image_model: str = "openai/clip-vit-base-patch32"
|
12 |
+
freeze_image_model: bool = True
|
13 |
+
text_model: str = "gpt2-large"
|
14 |
+
freeze_text_model: bool = True
|
15 |
+
image_hidden_size: int = 768
|
16 |
+
text_hidden_size: int = 1280
|
17 |
+
linear_mapping_type: int = "linear"
|
18 |
+
max_seq_length: int = 2048
|
19 |
+
image_resize: int = 224
|
20 |
+
add_image_token: bool = True
|
21 |
+
freeze_ln: bool = False
|
22 |
+
|
23 |
+
def __post_init__(self):
|
24 |
+
self.prefix_length = PREFIX_MAP[self.image_model]
|
demo.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from linear_mapping import LinearMapping, LinearMappingConfig, LinearMappingProcessor
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
os.environ['CURL_CA_BUNDLE'] = ''
|
7 |
+
|
8 |
+
config = LinearMappingConfig()
|
9 |
+
model = LinearMapping(config)
|
10 |
+
model.load_state_dict(torch.load("pytorch_model.bin"))
|
11 |
+
processor = LinearMappingProcessor(config)
|
12 |
+
processor.tokenizer.padding_side = 'left'
|
13 |
+
processor.tokenizer.pad_token_id = processor.tokenizer.eos_token_id
|
14 |
+
|
15 |
+
title = "Generate Image Captions With CLIP And GPT2"
|
16 |
+
|
17 |
+
|
18 |
+
def generate_image_captions(image, text):
|
19 |
+
inputs = processor(images=image, texts=text, return_tensors="pt")
|
20 |
+
input_ids = inputs.get("input_ids", None)
|
21 |
+
pixel_values = inputs.get("pixel_values", None)
|
22 |
+
attention_mask = inputs.get("attention_mask", None)
|
23 |
+
prediction = model.generate(
|
24 |
+
pixel_values=pixel_values,
|
25 |
+
input_ids=input_ids,
|
26 |
+
attention_mask=attention_mask,
|
27 |
+
max_new_tokens=50
|
28 |
+
)
|
29 |
+
|
30 |
+
prediction_text = processor.decode(prediction[0], num_beams=5, skip_special_tokens=True)
|
31 |
+
return prediction_text
|
32 |
+
|
33 |
+
|
34 |
+
article = "This demo is originated from this paper: [original paper](https://arxiv.org/abs/2209.15162)"
|
35 |
+
description = """
|
36 |
+
### Expand GPT2's language capabilities to vision with CLIP!
|
37 |
+
"""
|
38 |
+
demo = gr.Interface(
|
39 |
+
fn=generate_image_captions,
|
40 |
+
inputs=[
|
41 |
+
gr.Image(),
|
42 |
+
gr.Textbox(placeholder="A picture of", lines=3)
|
43 |
+
],
|
44 |
+
outputs="text",
|
45 |
+
examples=[
|
46 |
+
[os.path.join(os.getcwd(), 'two_bear.png'), ""],
|
47 |
+
[os.path.join(os.getcwd(), 'cat_with_food.png'), "Describe the picture:"],
|
48 |
+
[os.path.join(os.getcwd(), 'dog_with_frisbee.png'), "What is the color of the frisbee in the photo? Answer:"],
|
49 |
+
[os.path.join(os.getcwd(), 'stop_sign.png'), "What does the sign in the picture say? Answer:"]
|
50 |
+
],
|
51 |
+
article=article,
|
52 |
+
title=title,
|
53 |
+
description=description
|
54 |
+
)
|
55 |
+
|
56 |
+
demo.launch(share=True)
|
dog_with_frisbee.png
ADDED
linear_mapping.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from config import LinearMappingConfig
|
2 |
+
from transformers import (
|
3 |
+
GPT2TokenizerFast, GPT2LMHeadModel, AutoModel,
|
4 |
+
CLIPVisionModel, AutoProcessor, BatchEncoding,
|
5 |
+
)
|
6 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2DoubleHeadsModelOutput
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from typing import List, Optional, Union, Tuple, Dict
|
10 |
+
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
11 |
+
from torchvision.transforms.functional import InterpolationMode
|
12 |
+
|
13 |
+
|
14 |
+
class Transform(torch.nn.Module):
|
15 |
+
def __init__(self, image_size, mean, std):
|
16 |
+
super().__init__()
|
17 |
+
self.transforms = torch.nn.Sequential(
|
18 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC, antialias=True),
|
19 |
+
CenterCrop(image_size),
|
20 |
+
ConvertImageDtype(torch.float32),
|
21 |
+
Normalize(mean, std),
|
22 |
+
)
|
23 |
+
|
24 |
+
def forward(self, x) -> torch.Tensor:
|
25 |
+
"""`x` should be an instance of `PIL.Image.Image`"""
|
26 |
+
with torch.no_grad():
|
27 |
+
x = self.transforms(x)
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
class LinearMappingProcessor:
|
32 |
+
"""
|
33 |
+
A combination of ImageProcessor and GPT2TokenizerFast
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, config: LinearMappingConfig):
|
37 |
+
self.image_processor = AutoProcessor.from_pretrained(config.image_model)
|
38 |
+
self.tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
39 |
+
self.add_image_token = config.add_image_token
|
40 |
+
if config.add_image_token:
|
41 |
+
self.tokenizer.add_special_tokens({"cls_token": "|<image>|"})
|
42 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
43 |
+
self.tokenizer.padding_side = "right"
|
44 |
+
self.prefix_length = config.prefix_length
|
45 |
+
|
46 |
+
def __call__(self, texts=None, images=None, return_tensors="pt", **kwargs):
|
47 |
+
"""
|
48 |
+
The processor assumes that images and texts are of the same number
|
49 |
+
"""
|
50 |
+
|
51 |
+
if len(texts) == 0: # empty strings should be None
|
52 |
+
texts = None
|
53 |
+
|
54 |
+
if images is not None:
|
55 |
+
image_features = self.image_processor(images=images, return_tensors=return_tensors, **kwargs)
|
56 |
+
image_features["attention_mask"] = torch.ones(image_features.pixel_values.size(0),
|
57 |
+
self.prefix_length).to(dtype=torch.int64)
|
58 |
+
if texts is None and self.add_image_token:
|
59 |
+
texts = [self.tokenizer.cls_token for _ in range(image_features.pixel_values.size(0))]
|
60 |
+
elif texts is not None and self.add_image_token:
|
61 |
+
if isinstance(texts, str):
|
62 |
+
texts = [texts]
|
63 |
+
texts = [self.tokenizer.cls_token + text for text in texts]
|
64 |
+
|
65 |
+
elif texts is None:
|
66 |
+
texts = self.tokenizer.bos_token
|
67 |
+
|
68 |
+
if texts is not None:
|
69 |
+
encoding = self.tokenizer(texts, return_tensors=return_tensors, **kwargs)
|
70 |
+
|
71 |
+
if texts is not None and images is not None:
|
72 |
+
encoding["pixel_values"] = image_features.pixel_values
|
73 |
+
|
74 |
+
encoding["attention_mask"] = torch.cat([
|
75 |
+
image_features["attention_mask"],
|
76 |
+
encoding["attention_mask"]
|
77 |
+
], dim=1).to(dtype=torch.long) # create attention mask for images
|
78 |
+
return encoding
|
79 |
+
|
80 |
+
elif texts is not None:
|
81 |
+
return encoding
|
82 |
+
else:
|
83 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
84 |
+
|
85 |
+
def batch_decode(self, *args, **kwargs):
|
86 |
+
"""
|
87 |
+
This method forwards all its arguments to GPT2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
88 |
+
refer to the docstring of this method for more information.
|
89 |
+
"""
|
90 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
91 |
+
|
92 |
+
def decode(self, *args, **kwargs):
|
93 |
+
"""
|
94 |
+
This method forwards all its arguments to GPT2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
95 |
+
the docstring of this method for more information.
|
96 |
+
"""
|
97 |
+
return self.tokenizer.decode(*args, **kwargs)
|
98 |
+
|
99 |
+
|
100 |
+
class ImagePrefix(nn.Module):
|
101 |
+
"""
|
102 |
+
Converts pixel values to prefix image prompts that are later fed to a LLM
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(self, config: LinearMappingConfig):
|
106 |
+
super().__init__()
|
107 |
+
self.encoder = AutoModel.from_pretrained(config.image_model)
|
108 |
+
if "clip" in config.image_model:
|
109 |
+
self.encoder = CLIPVisionModel.from_pretrained(config.image_model)
|
110 |
+
|
111 |
+
if config.freeze_image_model:
|
112 |
+
for param in self.encoder.parameters():
|
113 |
+
param.requires_grad = False
|
114 |
+
|
115 |
+
self.linear = nn.Linear(config.image_hidden_size, config.text_hidden_size)
|
116 |
+
self.ln = nn.LayerNorm(config.text_hidden_size)
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self, pixel_values: torch.Tensor # B x C x H x W
|
120 |
+
) -> torch.Tensor:
|
121 |
+
prefixes = self.encoder(pixel_values).last_hidden_state # B x N x D
|
122 |
+
prefix_prompts = self.linear(prefixes)
|
123 |
+
return self.ln(prefix_prompts)
|
124 |
+
|
125 |
+
|
126 |
+
class LinearMapping(nn.Module):
|
127 |
+
|
128 |
+
def __init__(self, config: LinearMappingConfig):
|
129 |
+
super().__init__()
|
130 |
+
self.image_prefix = ImagePrefix(config)
|
131 |
+
self.language_model = GPT2LMHeadModel.from_pretrained(config.text_model)
|
132 |
+
self.processor = LinearMappingProcessor(config)
|
133 |
+
self.tokenizer = self.processor.tokenizer
|
134 |
+
self.image_processor = self.processor.image_processor
|
135 |
+
self.add_image_token = config.add_image_token
|
136 |
+
if config.add_image_token:
|
137 |
+
self.language_model.resize_token_embeddings(len(self.tokenizer))
|
138 |
+
|
139 |
+
if config.freeze_text_model:
|
140 |
+
for module in self.language_model.modules():
|
141 |
+
if not isinstance(module, nn.LayerNorm) or config.freeze_ln:
|
142 |
+
for param in module.parameters():
|
143 |
+
param.requires_grad = False
|
144 |
+
if config.add_image_token:
|
145 |
+
# create a gradient mask for the lm_head weight and bias and hook it
|
146 |
+
self.language_model.lm_head.weight.requires_grad = True
|
147 |
+
self.weight_gradient_mask = nn.Parameter(torch.zeros_like(self.language_model.lm_head.weight),
|
148 |
+
requires_grad=False)
|
149 |
+
self.weight_gradient_mask[-1, :] = 1.0
|
150 |
+
self.language_model.lm_head.weight.register_hook(lambda grad: grad.mul_(self.weight_gradient_mask))
|
151 |
+
|
152 |
+
def prepare_text_inputs(self, input_ids: torch.Tensor) -> torch.Tensor:
|
153 |
+
return self.language_model.transformer.wte(input_ids.to(dtype=torch.int64))
|
154 |
+
|
155 |
+
def prepare_inputs(
|
156 |
+
self,
|
157 |
+
input_ids: Optional[torch.Tensor],
|
158 |
+
pixel_values: Optional[torch.Tensor]
|
159 |
+
) -> Dict:
|
160 |
+
"""
|
161 |
+
Prepare captions and pixel values for training.
|
162 |
+
It takes the captions' input ids and turn them into input embeddings
|
163 |
+
and turns pixel values into prefix prompts.
|
164 |
+
Then it concatenates them into one whole prompt batch.
|
165 |
+
"""
|
166 |
+
if input_ids is not None and pixel_values is not None:
|
167 |
+
|
168 |
+
text_embeddings = self.prepare_text_inputs(input_ids) # B x T x D
|
169 |
+
prefix_prompts = self.image_prefix(pixel_values) # B x V x D
|
170 |
+
inputs_embeddings = torch.cat([prefix_prompts, text_embeddings], dim=1)
|
171 |
+
|
172 |
+
prefix_labels = torch.zeros(prefix_prompts.shape[:2], device=prefix_prompts.device) - 100
|
173 |
+
labels = torch.cat([prefix_labels, input_ids], dim=1) # B x (V + T)
|
174 |
+
|
175 |
+
for label in labels:
|
176 |
+
for k, token in enumerate(label):
|
177 |
+
if token == self.tokenizer.eos_token_id:
|
178 |
+
label[k + 1:] = -100
|
179 |
+
break
|
180 |
+
return {"hidden_states": inputs_embeddings, "labels": labels.to(dtype=torch.int64)}
|
181 |
+
|
182 |
+
elif pixel_values is not None:
|
183 |
+
prefix_prompts = self.image_prefix(pixel_values) # B x V x D
|
184 |
+
prefix_labels = torch.zeros(prefix_prompts.shape[:2], device=prefix_prompts.device) - 100
|
185 |
+
return {"hidden_states": prefix_prompts, "labels": prefix_labels.to(dtype=torch.int64)}
|
186 |
+
|
187 |
+
elif input_ids is not None:
|
188 |
+
text_embeddings = self.prepare_text_inputs(input_ids)
|
189 |
+
labels = input_ids.clone()
|
190 |
+
for label in labels:
|
191 |
+
for k, token in enumerate(label):
|
192 |
+
if token == self.tokenizer.eos_token_id:
|
193 |
+
label[k + 1:] = -100
|
194 |
+
break
|
195 |
+
return {"hidden_states": text_embeddings, "labels": labels.to(dtype=torch.int64)}
|
196 |
+
else:
|
197 |
+
return {"hidden_states": None, "labels": None}
|
198 |
+
|
199 |
+
@torch.no_grad()
|
200 |
+
def generate(
|
201 |
+
self,
|
202 |
+
input_ids: Optional[torch.Tensor] = None,
|
203 |
+
pixel_values: Optional[torch.Tensor] = None,
|
204 |
+
**kwargs
|
205 |
+
):
|
206 |
+
if pixel_values is None:
|
207 |
+
return self.language_model.generate(
|
208 |
+
input_ids=input_ids,
|
209 |
+
**kwargs
|
210 |
+
)
|
211 |
+
batch_size = pixel_values.size(0)
|
212 |
+
past_input_ids = None
|
213 |
+
if input_ids is None:
|
214 |
+
if self.add_image_token:
|
215 |
+
input_ids = torch.tensor([self.tokenizer.cls_token_id for _ in range(batch_size)]).view(batch_size, -1)
|
216 |
+
else:
|
217 |
+
input_ids = torch.tensor([self.tokenizer.bos_token_id for _ in range(batch_size)]).view(batch_size, -1)
|
218 |
+
if input_ids.size(-1) <= 1:
|
219 |
+
first_forward_outputs = self.forward(
|
220 |
+
pixel_values=pixel_values
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
first_forward_outputs = self.forward(
|
224 |
+
pixel_values=pixel_values,
|
225 |
+
input_ids=input_ids[:, :-1]
|
226 |
+
)
|
227 |
+
past_input_ids = input_ids[:, :-1]
|
228 |
+
input_ids = input_ids[:, -1].view(batch_size, -1)
|
229 |
+
|
230 |
+
past_key_values = first_forward_outputs.past_key_values
|
231 |
+
|
232 |
+
if kwargs.get("attention_mask", None) is None:
|
233 |
+
attention_mask_size = (past_key_values[0][0].size(0), past_key_values[0][0].size(-2))
|
234 |
+
|
235 |
+
attention_mask = torch.ones(attention_mask_size, dtype=torch.int64)
|
236 |
+
else:
|
237 |
+
attention_mask = kwargs.pop("attention_mask")
|
238 |
+
|
239 |
+
generated_token_ids = self.language_model.generate(
|
240 |
+
past_key_values=past_key_values,
|
241 |
+
input_ids=input_ids,
|
242 |
+
attention_mask=attention_mask,
|
243 |
+
**kwargs
|
244 |
+
)
|
245 |
+
if past_input_ids is not None:
|
246 |
+
generated_token_ids = torch.cat([past_input_ids, generated_token_ids], dim=-1)
|
247 |
+
return generated_token_ids
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
input_ids: Optional[torch.Tensor] = None,
|
252 |
+
pixel_values: Optional[torch.Tensor] = None,
|
253 |
+
labels: Optional[torch.Tensor] = None,
|
254 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
255 |
+
output_hidden_states: bool = True,
|
256 |
+
output_attentions: bool = True,
|
257 |
+
attention_mask: Optional[torch.Tensor] = None,
|
258 |
+
return_dict: Optional[bool] = True,
|
259 |
+
**kwargs
|
260 |
+
) -> Union[GPT2DoubleHeadsModelOutput, Tuple]:
|
261 |
+
if (pixel_values is None and input_ids is None) and inputs_embeds is None:
|
262 |
+
raise ValueError("You have to specify inputs")
|
263 |
+
if inputs_embeds is not None and (pixel_values is not None or input_ids is not None):
|
264 |
+
raise ValueError("Either inputs_embeds or (pixel_values and input_ids) should be specified, not both")
|
265 |
+
|
266 |
+
inputs = self.prepare_inputs(input_ids, pixel_values)
|
267 |
+
hidden_states = inputs.get('hidden_states', None) if inputs_embeds is None else inputs_embeds
|
268 |
+
labels = inputs.get('labels', None) if labels is None else labels
|
269 |
+
|
270 |
+
return self.language_model(
|
271 |
+
inputs_embeds=hidden_states,
|
272 |
+
labels=labels,
|
273 |
+
output_hidden_states=output_hidden_states,
|
274 |
+
output_attentions=output_attentions,
|
275 |
+
attention_mask=attention_mask,
|
276 |
+
return_dict=return_dict,
|
277 |
+
**kwargs
|
278 |
+
)
|
main.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from linear_mapping import LinearMapping, LinearMappingProcessor, LinearMappingConfig, Transform
|
3 |
+
import torch
|
4 |
+
from torchvision.io import ImageReadMode, read_image
|
5 |
+
from transformers import Trainer, TrainingArguments
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
os.environ["WANDB_DISABLED"] = "true"
|
9 |
+
|
10 |
+
DATA_DIR = os.path.join(os.getcwd(), "coco")
|
11 |
+
CAPTION_COLUMN = "caption"
|
12 |
+
IMAGE_COLUMN = "image_path"
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
ds = load_dataset("ydshieh/coco_dataset_script", "2017", DATA_DIR)
|
17 |
+
config = LinearMappingConfig()
|
18 |
+
processor = LinearMappingProcessor(config)
|
19 |
+
|
20 |
+
def collate_fn(batch):
|
21 |
+
return {
|
22 |
+
'pixel_values': torch.stack([x['pixel_values'] for x in batch]),
|
23 |
+
'input_ids': torch.tensor([x['input_ids'] for x in batch], dtype=torch.long),
|
24 |
+
'attention_mask': torch.stack([x["attention_mask"] for x in batch]),
|
25 |
+
}
|
26 |
+
|
27 |
+
def tokenize_fn(examples):
|
28 |
+
texts = list(examples[CAPTION_COLUMN])
|
29 |
+
if config.add_image_token:
|
30 |
+
texts = list(processor.tokenizer.cls_token + text for text in texts)
|
31 |
+
inputs = processor.tokenizer(
|
32 |
+
texts, padding="max_length", max_length=77,
|
33 |
+
return_tensors="pt", truncation=True
|
34 |
+
)
|
35 |
+
examples["input_ids"] = inputs.input_ids
|
36 |
+
examples["attention_mask"] = inputs.attention_mask
|
37 |
+
return examples
|
38 |
+
|
39 |
+
image_transformations = Transform(
|
40 |
+
config.image_resize,
|
41 |
+
[0.48145466, 0.4578275, 0.40821073],
|
42 |
+
[0.26862954, 0.26130258, 0.27577711]
|
43 |
+
)
|
44 |
+
image_transformations = torch.jit.script(image_transformations)
|
45 |
+
|
46 |
+
def transform_images(examples):
|
47 |
+
images = [read_image(image_file, mode=ImageReadMode.RGB) for image_file in examples[IMAGE_COLUMN]]
|
48 |
+
examples["pixel_values"] = [image_transformations(image) for image in images]
|
49 |
+
|
50 |
+
examples["attention_mask"] = torch.cat([
|
51 |
+
torch.ones(len(images), config.prefix_length),
|
52 |
+
torch.tensor(examples["attention_mask"])
|
53 |
+
], dim=1).to(dtype=torch.long)
|
54 |
+
return examples
|
55 |
+
|
56 |
+
def preprocess_fn(examples):
|
57 |
+
|
58 |
+
texts = list(examples[CAPTION_COLUMN])
|
59 |
+
|
60 |
+
images = [read_image(image_file, mode=ImageReadMode.RGB) for image_file in examples[IMAGE_COLUMN]]
|
61 |
+
inputs = processor(
|
62 |
+
texts=texts, images=images, padding="max_length", truncation=True, max_length=77, return_tensors="pt"
|
63 |
+
)
|
64 |
+
return inputs
|
65 |
+
|
66 |
+
def filter_corrupt_images(examples):
|
67 |
+
"""remove problematic images"""
|
68 |
+
valid_images = []
|
69 |
+
for image_file in examples[IMAGE_COLUMN]:
|
70 |
+
try:
|
71 |
+
Image.open(image_file)
|
72 |
+
valid_images.append(True)
|
73 |
+
except Exception:
|
74 |
+
valid_images.append(False)
|
75 |
+
return valid_images
|
76 |
+
|
77 |
+
train_dataset = ds["train"]
|
78 |
+
|
79 |
+
train_dataset = train_dataset.filter(
|
80 |
+
function=filter_corrupt_images,
|
81 |
+
batched=True
|
82 |
+
)
|
83 |
+
train_dataset = train_dataset.map(
|
84 |
+
function=tokenize_fn,
|
85 |
+
batched=True,
|
86 |
+
remove_columns=[col for col in train_dataset.column_names if col != IMAGE_COLUMN and col != CAPTION_COLUMN],
|
87 |
+
load_from_cache_file=True
|
88 |
+
)
|
89 |
+
train_dataset.set_transform(transform_images)
|
90 |
+
|
91 |
+
training_args = TrainingArguments(
|
92 |
+
learning_rate=5e-4,
|
93 |
+
lr_scheduler_type='cosine',
|
94 |
+
output_dir='clip-gpt2-image-captioner',
|
95 |
+
do_train=True,
|
96 |
+
logging_steps=50,
|
97 |
+
num_train_epochs=5,
|
98 |
+
logging_dir='runs',
|
99 |
+
remove_unused_columns=False,
|
100 |
+
max_grad_norm=1.0,
|
101 |
+
per_device_train_batch_size=16,
|
102 |
+
save_total_limit=3,
|
103 |
+
warmup_steps=500
|
104 |
+
)
|
105 |
+
model = LinearMapping(config)
|
106 |
+
trainer = Trainer(
|
107 |
+
model=model,
|
108 |
+
args=training_args,
|
109 |
+
train_dataset=train_dataset,
|
110 |
+
data_collator=collate_fn
|
111 |
+
)
|
112 |
+
trainer.train()
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == '__main__':
|
116 |
+
main()
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f817ef4696fa1ccb00cf19e71ed36660d9c52212fd1e953dbf52f923a7553ca0
|
3 |
+
size 3707484877
|
stop_sign.png
ADDED
two_bear.png
ADDED