File size: 1,416 Bytes
7e0dcfc
6385c67
4397550
ae892a5
 
e7a1352
4397550
e7a1352
6385c67
 
 
e7a1352
6385c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb77d1
 
 
6385c67
 
e7a1352
6385c67
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig
from lmdeploy.vl import load_image
import spaces
import gradio as gr
from PIL import Image
import numpy as np

pipe = pipeline('gokaygokay/llava-llama3-docci')

@spaces.GPU
def create_captions_llava_llama3_docci(image):
    
    gen_config = GenerationConfig(repetition_penalty=1.10)
    image = Image.fromarray(np.uint8(image)).convert('RGB')
    response = pipe(('describe this image in detail', image), gen_config=gen_config)
    return response.text

css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Fine tuned version of xtuner/llava-llama-3-8b-v1_1 on google/docci dataset.<center><h1>")

    with gr.Tab(label="SD3 Llava Llama3 Captioner"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture")
                submit_btn = gr.Button(value="Submit")
                output = gr.Text(label="Caption")
            
        gr.Examples(
        [["image1.jpg"], ["image2.jpg"], ["image3.png"]],
        inputs = [input_img],
        outputs = [output],
        fn=create_captions_llava_llama3_docci,
        label='Try captioning on examples'
        )
        
        submit_btn.click(create_captions_llava_llama3_docci, [input_img], [output])
    

demo.launch(debug=True)