bdsqlsz's picture
Update app.py
5c6c732 verified
raw
history blame
1.71 kB
from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig
from lmdeploy.vl import load_image
import spaces
import gradio as gr
from PIL import Image
import numpy as np
@spaces.GPU
def create_captions_llava_llama3_docci(image):
pipe = pipeline('Lin-Chen/open-llava-next-llama3-8b')
gen_config = GenerationConfig(repetition_penalty=1.10)
image = Image.fromarray(np.uint8(image)).convert('RGB')
response = pipe(('As an AI image annotation expert, please provide accurate annotations for images to enhance model understanding of the content.These prompts will be used for image reconstruction, so the closer the similarity to the original image, the better the prompts quality.Special prompts will receive a reward of $10 per image.', image), gen_config=gen_config)
return response.text
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Fine tuned version of xtuner/llava-llama-3-8b-v1_1 on google/docci dataset.<center><h1>")
with gr.Tab(label="SD3 Llava Llama3 Captioner"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
submit_btn = gr.Button(value="Submit")
output = gr.Text(label="Caption")
gr.Examples(
[["image1.jpg"], ["image2.jpg"], ["image3.png"]],
inputs = [input_img],
outputs = [output],
fn=create_captions_llava_llama3_docci,
label='Try captioning on examples'
)
submit_btn.click(create_captions_llava_llama3_docci, [input_img], [output])
demo.launch(debug=True)