File size: 10,466 Bytes
f0de4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
import cv2
import os
import tqdm
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from .util import rgb_to_lab, lab_to_rgb


def blend(f, b, a):
    return f*a + b*(1 - a)


class PatchedHarmonizer(nn.Module):
    def __init__(self, grid_count=1, init_weights=[0.9, 0.1]):
        super(PatchedHarmonizer, self).__init__()
        self.eps = 1e-8
        # self.weights = torch.nn.Parameter(torch.ones((grid_count, grid_count)), requires_grad=True)
        # self.grid_weights_ = torch.nn.Parameter(torch.FloatTensor(init_weights), requires_grad=True)
        self.grid_weights = torch.nn.Parameter(
            torch.FloatTensor(init_weights), requires_grad=True)
        # self.weights.retain_graph = True
        self.grid_count = grid_count

    def lab_shift(self, x, invert=False):
        x = x.float()
        if invert:
            x[:, 0, :, :] /= 2.55
            x[:, 1, :, :] -= 128
            x[:, 2, :, :] -= 128
        else:
            x[:, 0, :, :] *= 2.55
            x[:, 1, :, :] += 128
            x[:, 2, :, :] += 128

        return x

    def get_mean_std(self, img, mask, dim=[2, 3]):
        sum = torch.sum(img*mask, dim=dim)     # (B, C)
        num = torch.sum(mask, dim=dim)       # (B, C)
        mu = sum / (num + self.eps)
        mean = mu[:, :, None, None]
        var = torch.sum(((img - mean)*mask) ** 2, dim=dim) / (num + self.eps)
        var = var[:, :, None, None]

        return mean, torch.sqrt(var+self.eps)

    def compute_patch_statistics(self, lab):
        means, stds = [], []
        bs, dx, dy = lab.shape[0], lab.shape[2] // self.grid_count, lab.shape[3] // self.grid_count
        for h in range(self.grid_count):
            cmeans, cstds = [], []
            for w in range(self.grid_count):
                ind = [h*dx, (h+1)*dx, w*dy, (w+1)*dy]
                if h == self.grid_count - 1:
                    ind[1] = None
                if w == self.grid_count - 1:
                    ind[-1] = None
                m, v = self.compute_mean_var(
                    lab[:, :, ind[0]:ind[1], ind[2]:ind[3]], dim=[2, 3])
                cmeans.append(m)
                cstds.append(v)
            means.append(cmeans)
            stds.append(cstds)

        return means, stds

    def compute_mean_var(self, x, dim=[1, 2]):
        mean = x.float().mean(dim=dim)[:, :, None, None]
        var = torch.sqrt(x.float().var(dim=dim))[:, :, None, None]

        return mean, var

    def forward(self, fg_rgb, bg_rgb, alpha, masked_stats=False):

        bg_rgb = F.interpolate(bg_rgb, size=(
            fg_rgb.shape[2:]))  # b x C x H x W

        bg_lab = bg_rgb  # self.lab_shift(rgb_to_lab(bg_rgb/255.))
        fg_lab = fg_rgb  # self.lab_shift(rgb_to_lab(fg_rgb/255.))

        if masked_stats:
            self.bg_global_mean, self.bg_global_var = self.get_mean_std(
                img=bg_lab, mask=(1-alpha))
            self.fg_global_mean, self.fg_global_var = self.get_mean_std(
                img=fg_lab, mask=torch.ones_like(alpha))
        else:
            self.bg_global_mean, self.bg_global_var = self.compute_mean_var(bg_lab, dim=[
                                                                            2, 3])
            self.fg_global_mean, self.fg_global_var = self.compute_mean_var(fg_lab, dim=[
                                                                            2, 3])

        self.bg_means, self.bg_vars = self.compute_patch_statistics(
            bg_lab)
        self.fg_means, self.fg_vars = self.compute_patch_statistics(
            fg_lab)

        fg_harm = self.harmonize(fg_lab)
        # fg_harm = lab_to_rgb(fg_harm)
        bg = F.interpolate(bg_rgb, size=(fg_rgb.shape[2:]))/255.

        composite = blend(fg_harm, bg, alpha)

        return composite, fg_harm

    def harmonize(self, fg):
        harmonized = torch.zeros_like(fg)
        dx = fg.shape[2] // self.grid_count
        dy = fg.shape[3] // self.grid_count
        for h in range(self.grid_count):
            for w in range(self.grid_count):
                ind = [h*dx, (h+1)*dx, w*dy, (w+1)*dy]
                if h == self.grid_count - 1:
                    ind[1] = None
                if w == self.grid_count - 1:
                    ind[-1] = None
                harmonized[:, :, ind[0]:ind[1], ind[2]:ind[3]] = self.normalize_channel(
                    fg[:, :, ind[0]:ind[1], ind[2]:ind[3]], h, w)

        # harmonized = self.lab_shift(harmonized, invert=True)

        return harmonized

    def normalize_channel(self, value, h, w):

        fg_local_mean, fg_local_var = self.fg_means[h][w], self.fg_vars[h][w]
        bg_local_mean, bg_local_var = self.bg_means[h][w], self.bg_vars[h][w]
        fg_global_mean, fg_global_var = self.fg_global_mean, self.fg_global_var
        bg_global_mean, bg_global_var = self.bg_global_mean, self.bg_global_var

        # global2global normalization
        zeroed_mean = value - fg_global_mean
        # (fg_v * div_global_v +  (1-fg_v) * div_v)
        scaled_var = zeroed_mean * (bg_global_var/(fg_global_var + self.eps))
        normalized_global = scaled_var + bg_global_mean

        # local2local normalization
        zeroed_mean = value - fg_local_mean
        # (fg_v * div_global_v +  (1-fg_v) * div_v)
        scaled_var = zeroed_mean * (bg_local_var/(fg_local_var + self.eps))
        normalized_local = scaled_var + bg_local_mean

        return self.grid_weights[0]*normalized_local + self.grid_weights[1]*normalized_global

    def normalize_fg(self, value):
        zeroed_mean = value - \
            (self.fg_local_mean *
             self.grid_weights[None, None, :, :, None, None]).sum().squeeze()
        # (fg_v * div_global_v +  (1-fg_v) * div_v)
        scaled_var = zeroed_mean * \
            (self.bg_global_var/(self.fg_global_var + self.eps))
        normalized_lg = scaled_var + \
            (self.bg_local_mean *
             self.grid_weights[None, None, :, :, None, None]).sum().squeeze()

        return normalized_lg


class PatchNormalizer(nn.Module):
    def __init__(self, in_channels=3, eps=1e-7, grid_count=1, weights=[0.5, 0.5], init_value=1e-2):
        super(PatchNormalizer, self).__init__()
        self.grid_count = grid_count
        self.eps = eps

        self.weights = nn.Parameter(
            torch.FloatTensor(weights), requires_grad=True)
        self.fg_var = nn.Parameter(
            init_value * torch.ones(in_channels)[None, :, None, None], requires_grad=True)
        self.fg_bias = nn.Parameter(
            init_value * torch.zeros(in_channels)[None, :, None, None], requires_grad=True)
        self.patched_fg_var = nn.Parameter(
            init_value * torch.ones(in_channels)[None, :, None, None], requires_grad=True)
        self.patched_fg_bias = nn.Parameter(
            init_value * torch.zeros(in_channels)[None, :, None, None], requires_grad=True)
        self.bg_var = nn.Parameter(
            init_value * torch.ones(in_channels)[None, :, None, None], requires_grad=True)
        self.bg_bias = nn.Parameter(
            init_value * torch.zeros(in_channels)[None, :, None, None], requires_grad=True)
        self.grid_weights = torch.nn.Parameter(torch.ones((in_channels, grid_count, grid_count))[
                                               None, :, :, :] / (grid_count*grid_count*in_channels), requires_grad=True)

    def local_normalization(self, value):
        zeroed_mean = value - \
            (self.fg_local_mean *
             self.grid_weights[None, None, :, :, None, None]).sum().squeeze()
        # (fg_v * div_global_v +  (1-fg_v) * div_v)
        scaled_var = zeroed_mean * \
            (self.bg_global_var/(self.fg_global_var + self.eps))
        normalized_lg = scaled_var + \
            (self.bg_local_mean *
             self.grid_weights[None, None, :, :, None, None]).sum().squeeze()

        return normalized_lg

    def get_mean_std(self, img, mask, dim=[2, 3]):
        sum = torch.sum(img*mask, dim=dim)     # (B, C)
        num = torch.sum(mask, dim=dim)       # (B, C)
        mu = sum / (num + self.eps)
        mean = mu[:, :, None, None]
        var = torch.sum(((img - mean)*mask) ** 2, dim=dim) / (num + self.eps)
        var = var[:, :, None, None]

        return mean, torch.sqrt(var+self.eps)

    def compute_patch_statistics(self, img, mask):
        means, stds = [], []
        bs, dx, dy = img.shape[0], img.shape[2] // self.grid_count, img.shape[3] // self.grid_count
        for h in range(self.grid_count):
            cmeans, cstds = [], []
            for w in range(self.grid_count):
                ind = [h*dx, (h+1)*dx, w*dy, (w+1)*dy]
                if h == self.grid_count - 1:
                    ind[1] = None
                if w == self.grid_count - 1:
                    ind[-1] = None
                m, v = self.get_mean_std(
                    img[:, :, ind[0]:ind[1], ind[2]:ind[3]], mask[:, :, ind[0]:ind[1], ind[2]:ind[3]], dim=[2, 3])
                cmeans.append(m.reshape(m.shape[:2]))
                cstds.append(v.reshape(v.shape[:2]))
            means.append(torch.stack(cmeans))
            stds.append(torch.stack(cstds))

        return torch.stack(means), torch.stack(stds)

    def compute_mean_var(self, x, dim=[2, 3]):
        mean = x.float().mean(dim=dim)
        var = torch.sqrt(x.float().var(dim=dim))

        return mean, var

    def forward(self, fg, bg, mask):

        self.local_means, self.local_vars = self.compute_patch_statistics(
            bg, (1-mask))

        bg_mean, bg_var = self.get_mean_std(bg, 1 - mask)
        zeroed_mean = (bg - bg_mean)
        unscaled = zeroed_mean / bg_var
        bg_normalized = unscaled * self.bg_var + self.bg_bias

        fg_mean, fg_var = self.get_mean_std(fg, mask)
        zeroed_mean = fg - fg_mean
        unscaled = zeroed_mean / fg_var

        mean_patched_back = (self.local_means.permute(
            2, 3, 0, 1)*self.grid_weights).sum(dim=[2, 3])[:, :, None, None]

        normalized = unscaled * bg_var + bg_mean
        patch_normalized = unscaled * bg_var + mean_patched_back

        fg_normalized = normalized * self.fg_var + self.fg_bias
        fg_patch_normalized = patch_normalized * \
            self.patched_fg_var + self.patched_fg_bias

        fg_result = self.weights[0] * fg_normalized + \
            self.weights[1] * fg_patch_normalized
        composite = blend(fg_result, bg_normalized, mask)

        return composite