File size: 11,335 Bytes
f0de4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import math
import numpy as np
from typing import Tuple
import torch
import torch.nn as nn
from torchvision.utils import make_grid
import cv2
from torchvision import transforms, models


def log(msg, lvl='info'):
    if lvl == 'info':
        print(f"***********{msg}****************")
    if lvl == 'error':
        print(f"!!! Exception: {msg} !!!")


def lab_shift(x, invert=False):
    x = x.float()
    if invert:
        x[:, 0, :, :] /= 2.55
        x[:, 1, :, :] -= 128
        x[:, 2, :, :] -= 128
    else:
        x[:, 0, :, :] *= 2.55
        x[:, 1, :, :] += 128
        x[:, 2, :, :] += 128

    return x


def calculate_psnr(img1, img2):
    # img1 and img2 have range [0, 255]
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    mse = np.mean((img1 - img2)**2)
    if mse == 0:
        return float('inf')

    return 20 * math.log10(255.0 / math.sqrt(mse))


def calculate_fpsnr(fmse):
    return 10 * math.log10(255.0 / (fmse + 1e-8))


def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1), bit=8):
    '''
    Converts a torch Tensor into an image Numpy array
    Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
    Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
    '''
    norm = float(2**bit) - 1
    # print('before', tensor[:,:,0].max(), tensor[:,:,0].min(), '\t', tensor[:,:,1].max(), tensor[:,:,1].min(), '\t', tensor[:,:,2].max(), tensor[:,:,2].min())
    tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # clamp
    # print('clamp ', tensor[:,:,0].max(), tensor[:,:,0].min(), '\t', tensor[:,:,1].max(), tensor[:,:,1].min(), '\t', tensor[:,:,2].max(), tensor[:,:,2].min())
    tensor = (tensor - min_max[0]) / \
        (min_max[1] - min_max[0])  # to range [0,1]
    n_dim = tensor.dim()
    if n_dim == 4:
        n_img = len(tensor)
        img_np = make_grid(tensor, nrow=int(
            math.sqrt(n_img)), normalize=False).numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 3:
        img_np = tensor.numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 2:
        img_np = tensor.numpy()
    else:
        raise TypeError(
            'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
    if out_type == np.uint8:
        # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
        img_np = (img_np * norm).round()
    return img_np.astype(out_type)


def rgb_to_lab(image: torch.Tensor) -> torch.Tensor:
    r"""Convert a RGB image to Lab.

    .. image:: _static/img/rgb_to_lab.png

    The input RGB image is assumed to be in the range of :math:`[0, 1]`. Lab
    color is computed using the D65 illuminant and Observer 2.

    Args:
        image: RGB Image to be converted to Lab with shape :math:`(*, 3, H, W)`.

    Returns:
        Lab version of the image with shape :math:`(*, 3, H, W)`.
        The L channel values are in the range 0..100. a and b are in the range -128..127.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = rgb_to_lab(input)  # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")

    # Convert from sRGB to Linear RGB
    lin_rgb = rgb_to_linear_rgb(image)

    xyz_im: torch.Tensor = rgb_to_xyz(lin_rgb)

    # normalize for D65 white point
    xyz_ref_white = torch.tensor(
        [0.95047, 1.0, 1.08883], device=xyz_im.device, dtype=xyz_im.dtype)[..., :, None, None]
    xyz_normalized = torch.div(xyz_im, xyz_ref_white)

    threshold = 0.008856
    power = torch.pow(xyz_normalized.clamp(min=threshold), 1 / 3.0)
    scale = 7.787 * xyz_normalized + 4.0 / 29.0
    xyz_int = torch.where(xyz_normalized > threshold, power, scale)

    x: torch.Tensor = xyz_int[..., 0, :, :]
    y: torch.Tensor = xyz_int[..., 1, :, :]
    z: torch.Tensor = xyz_int[..., 2, :, :]

    L: torch.Tensor = (116.0 * y) - 16.0
    a: torch.Tensor = 500.0 * (x - y)
    _b: torch.Tensor = 200.0 * (y - z)

    out: torch.Tensor = torch.stack([L, a, _b], dim=-3)

    return out


def lab_to_rgb(image: torch.Tensor, clip: bool = True) -> torch.Tensor:
    r"""Convert a Lab image to RGB.

    The L channel is assumed to be in the range of :math:`[0, 100]`.
    a and b channels are in the range of :math:`[-128, 127]`.

    Args:
        image: Lab image to be converted to RGB with shape :math:`(*, 3, H, W)`.
        clip: Whether to apply clipping to insure output RGB values in range :math:`[0, 1]`.

    Returns:
        Lab version of the image with shape :math:`(*, 3, H, W)`.
        The output RGB image are in the range of :math:`[0, 1]`.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = lab_to_rgb(input)  # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")

    L: torch.Tensor = image[..., 0, :, :]
    a: torch.Tensor = image[..., 1, :, :]
    _b: torch.Tensor = image[..., 2, :, :]

    fy = (L + 16.0) / 116.0
    fx = (a / 500.0) + fy
    fz = fy - (_b / 200.0)

    # if color data out of range: Z < 0
    fz = fz.clamp(min=0.0)

    fxyz = torch.stack([fx, fy, fz], dim=-3)

    # Convert from Lab to XYZ
    power = torch.pow(fxyz, 3.0)
    scale = (fxyz - 4.0 / 29.0) / 7.787
    xyz = torch.where(fxyz > 0.2068966, power, scale)

    # For D65 white point
    xyz_ref_white = torch.tensor(
        [0.95047, 1.0, 1.08883], device=xyz.device, dtype=xyz.dtype)[..., :, None, None]
    xyz_im = xyz * xyz_ref_white

    rgbs_im: torch.Tensor = xyz_to_rgb(xyz_im)

    # https://github.com/richzhang/colorization-pytorch/blob/66a1cb2e5258f7c8f374f582acc8b1ef99c13c27/util/util.py#L107
    #     rgbs_im = torch.where(rgbs_im < 0, torch.zeros_like(rgbs_im), rgbs_im)

    # Convert from RGB Linear to sRGB
    rgb_im = linear_rgb_to_rgb(rgbs_im)

    # Clip to 0,1 https://www.w3.org/Graphics/Color/srgb
    if clip:
        rgb_im = torch.clamp(rgb_im, min=0.0, max=1.0)

    return rgb_im


def rgb_to_xyz(image: torch.Tensor) -> torch.Tensor:
    r"""Convert a RGB image to XYZ.

    .. image:: _static/img/rgb_to_xyz.png

    Args:
        image: RGB Image to be converted to XYZ with shape :math:`(*, 3, H, W)`.

    Returns:
         XYZ version of the image with shape :math:`(*, 3, H, W)`.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = rgb_to_xyz(input)  # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")

    r: torch.Tensor = image[..., 0, :, :]
    g: torch.Tensor = image[..., 1, :, :]
    b: torch.Tensor = image[..., 2, :, :]

    x: torch.Tensor = 0.412453 * r + 0.357580 * g + 0.180423 * b
    y: torch.Tensor = 0.212671 * r + 0.715160 * g + 0.072169 * b
    z: torch.Tensor = 0.019334 * r + 0.119193 * g + 0.950227 * b

    out: torch.Tensor = torch.stack([x, y, z], -3)

    return out


def xyz_to_rgb(image: torch.Tensor) -> torch.Tensor:
    r"""Convert a XYZ image to RGB.

    Args:
        image: XYZ Image to be converted to RGB with shape :math:`(*, 3, H, W)`.

    Returns:
        RGB version of the image with shape :math:`(*, 3, H, W)`.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = xyz_to_rgb(input)  # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")

    x: torch.Tensor = image[..., 0, :, :]
    y: torch.Tensor = image[..., 1, :, :]
    z: torch.Tensor = image[..., 2, :, :]

    r: torch.Tensor = 3.2404813432005266 * x + - \
        1.5371515162713185 * y + -0.4985363261688878 * z
    g: torch.Tensor = -0.9692549499965682 * x + \
        1.8759900014898907 * y + 0.0415559265582928 * z
    b: torch.Tensor = 0.0556466391351772 * x + - \
        0.2040413383665112 * y + 1.0573110696453443 * z

    out: torch.Tensor = torch.stack([r, g, b], dim=-3)

    return out


def rgb_to_linear_rgb(image: torch.Tensor) -> torch.Tensor:
    r"""Convert an sRGB image to linear RGB. Used in colorspace conversions.

    .. image:: _static/img/rgb_to_linear_rgb.png

    Args:
        image: sRGB Image to be converted to linear RGB of shape :math:`(*,3,H,W)`.

    Returns:
        linear RGB version of the image with shape of :math:`(*,3,H,W)`.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = rgb_to_linear_rgb(input) # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W).Got {image.shape}")

    lin_rgb: torch.Tensor = torch.where(image > 0.04045, torch.pow(
        ((image + 0.055) / 1.055), 2.4), image / 12.92)

    return lin_rgb


def linear_rgb_to_rgb(image: torch.Tensor) -> torch.Tensor:
    r"""Convert a linear RGB image to sRGB. Used in colorspace conversions.

    Args:
        image: linear RGB Image to be converted to sRGB of shape :math:`(*,3,H,W)`.

    Returns:
        sRGB version of the image with shape of shape :math:`(*,3,H,W)`.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = linear_rgb_to_rgb(input) # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W).Got {image.shape}")

    threshold = 0.0031308
    rgb: torch.Tensor = torch.where(
        image > threshold, 1.055 *
        torch.pow(image.clamp(min=threshold), 1 / 2.4) - 0.055, 12.92 * image
    )

    return rgb


def inference_img(model, img, device='cpu'):
    h, w, _ = img.shape
    # print(img.shape)
    if h % 8 != 0 or w % 8 != 0:
        img = cv2.copyMakeBorder(img, 8-h % 8, 0, 8-w %
                                 8, 0, cv2.BORDER_REFLECT)
    # print(img.shape)

    tensor_img = torch.from_numpy(img).permute(2, 0, 1).to(device)
    input_t = tensor_img
    input_t = input_t/255.0
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    input_t = normalize(input_t)
    input_t = input_t.unsqueeze(0).float()
    with torch.no_grad():
        out = model(input_t)
    # print("out",out.shape)
    result = out[0][:, -h:, -w:].cpu().numpy()
    # print(result.shape)

    return result[0]