befozg's picture
fixed live demo app, converted network for onnx convertion, fixed code
0891b79
raw
history blame
12.7 kB
import math
import numpy as np
from typing import Tuple
import torch
import torch.nn as nn
from torchvision.utils import make_grid
import cv2
from torchvision import transforms, models
from PIL import Image
import torchvision.transforms.functional as tf
# --------------------------------------------Metric tools-------------------------------------------- #
def lab_shift(x, invert=False):
x = x.float()
if invert:
x[:, 0, :, :] /= 2.55
x[:, 1, :, :] -= 128
x[:, 2, :, :] -= 128
else:
x[:, 0, :, :] *= 2.55
x[:, 1, :, :] += 128
x[:, 2, :, :] += 128
return x
def calculate_psnr(img1, img2):
# img1 and img2 have range [0, 255]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def calculate_fpsnr(fmse):
return 10 * math.log10(255.0 / (fmse + 1e-8))
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1), bit=8):
'''
Converts a torch Tensor into an image Numpy array
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
norm = float(2**bit) - 1
# print('before', tensor[:,:,0].max(), tensor[:,:,0].min(), '\t', tensor[:,:,1].max(), tensor[:,:,1].min(), '\t', tensor[:,:,2].max(), tensor[:,:,2].min())
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
# print('clamp ', tensor[:,:,0].max(), tensor[:,:,0].min(), '\t', tensor[:,:,1].max(), tensor[:,:,1].min(), '\t', tensor[:,:,2].max(), tensor[:,:,2].min())
tensor = (tensor - min_max[0]) / \
(min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(
math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
img_np = (img_np * norm).round()
return img_np.astype(out_type)
def rgb_to_lab(image: torch.Tensor) -> torch.Tensor:
r"""Convert a RGB image to Lab.
.. image:: _static/img/rgb_to_lab.png
The input RGB image is assumed to be in the range of :math:`[0, 1]`. Lab
color is computed using the D65 illuminant and Observer 2.
Args:
image: RGB Image to be converted to Lab with shape :math:`(*, 3, H, W)`.
Returns:
Lab version of the image with shape :math:`(*, 3, H, W)`.
The L channel values are in the range 0..100. a and b are in the range -128..127.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> output = rgb_to_lab(input) # 2x3x4x5
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(
f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
# Convert from sRGB to Linear RGB
lin_rgb = rgb_to_linear_rgb(image)
xyz_im: torch.Tensor = rgb_to_xyz(lin_rgb)
# normalize for D65 white point
xyz_ref_white = torch.tensor(
[0.95047, 1.0, 1.08883], device=xyz_im.device, dtype=xyz_im.dtype)[..., :, None, None]
xyz_normalized = torch.div(xyz_im, xyz_ref_white)
threshold = 0.008856
power = torch.pow(xyz_normalized.clamp(min=threshold), 1 / 3.0)
scale = 7.787 * xyz_normalized + 4.0 / 29.0
xyz_int = torch.where(xyz_normalized > threshold, power, scale)
x: torch.Tensor = xyz_int[..., 0, :, :]
y: torch.Tensor = xyz_int[..., 1, :, :]
z: torch.Tensor = xyz_int[..., 2, :, :]
L: torch.Tensor = (116.0 * y) - 16.0
a: torch.Tensor = 500.0 * (x - y)
_b: torch.Tensor = 200.0 * (y - z)
out: torch.Tensor = torch.stack([L, a, _b], dim=-3)
return out
def lab_to_rgb(image: torch.Tensor, clip: bool = True) -> torch.Tensor:
r"""Convert a Lab image to RGB.
The L channel is assumed to be in the range of :math:`[0, 100]`.
a and b channels are in the range of :math:`[-128, 127]`.
Args:
image: Lab image to be converted to RGB with shape :math:`(*, 3, H, W)`.
clip: Whether to apply clipping to insure output RGB values in range :math:`[0, 1]`.
Returns:
Lab version of the image with shape :math:`(*, 3, H, W)`.
The output RGB image are in the range of :math:`[0, 1]`.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> output = lab_to_rgb(input) # 2x3x4x5
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(
f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
L: torch.Tensor = image[..., 0, :, :]
a: torch.Tensor = image[..., 1, :, :]
_b: torch.Tensor = image[..., 2, :, :]
fy = (L + 16.0) / 116.0
fx = (a / 500.0) + fy
fz = fy - (_b / 200.0)
# if color data out of range: Z < 0
fz = fz.clamp(min=0.0)
fxyz = torch.stack([fx, fy, fz], dim=-3)
# Convert from Lab to XYZ
power = torch.pow(fxyz, 3.0)
scale = (fxyz - 4.0 / 29.0) / 7.787
xyz = torch.where(fxyz > 0.2068966, power, scale)
# For D65 white point
xyz_ref_white = torch.tensor(
[0.95047, 1.0, 1.08883], device=xyz.device, dtype=xyz.dtype)[..., :, None, None]
xyz_im = xyz * xyz_ref_white
rgbs_im: torch.Tensor = xyz_to_rgb(xyz_im)
# https://github.com/richzhang/colorization-pytorch/blob/66a1cb2e5258f7c8f374f582acc8b1ef99c13c27/util/util.py#L107
# rgbs_im = torch.where(rgbs_im < 0, torch.zeros_like(rgbs_im), rgbs_im)
# Convert from RGB Linear to sRGB
rgb_im = linear_rgb_to_rgb(rgbs_im)
# Clip to 0,1 https://www.w3.org/Graphics/Color/srgb
if clip:
rgb_im = torch.clamp(rgb_im, min=0.0, max=1.0)
return rgb_im
def rgb_to_xyz(image: torch.Tensor) -> torch.Tensor:
r"""Convert a RGB image to XYZ.
.. image:: _static/img/rgb_to_xyz.png
Args:
image: RGB Image to be converted to XYZ with shape :math:`(*, 3, H, W)`.
Returns:
XYZ version of the image with shape :math:`(*, 3, H, W)`.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> output = rgb_to_xyz(input) # 2x3x4x5
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(
f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
r: torch.Tensor = image[..., 0, :, :]
g: torch.Tensor = image[..., 1, :, :]
b: torch.Tensor = image[..., 2, :, :]
x: torch.Tensor = 0.412453 * r + 0.357580 * g + 0.180423 * b
y: torch.Tensor = 0.212671 * r + 0.715160 * g + 0.072169 * b
z: torch.Tensor = 0.019334 * r + 0.119193 * g + 0.950227 * b
out: torch.Tensor = torch.stack([x, y, z], -3)
return out
def xyz_to_rgb(image: torch.Tensor) -> torch.Tensor:
r"""Convert a XYZ image to RGB.
Args:
image: XYZ Image to be converted to RGB with shape :math:`(*, 3, H, W)`.
Returns:
RGB version of the image with shape :math:`(*, 3, H, W)`.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> output = xyz_to_rgb(input) # 2x3x4x5
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(
f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
x: torch.Tensor = image[..., 0, :, :]
y: torch.Tensor = image[..., 1, :, :]
z: torch.Tensor = image[..., 2, :, :]
r: torch.Tensor = 3.2404813432005266 * x + - \
1.5371515162713185 * y + -0.4985363261688878 * z
g: torch.Tensor = -0.9692549499965682 * x + \
1.8759900014898907 * y + 0.0415559265582928 * z
b: torch.Tensor = 0.0556466391351772 * x + - \
0.2040413383665112 * y + 1.0573110696453443 * z
out: torch.Tensor = torch.stack([r, g, b], dim=-3)
return out
def rgb_to_linear_rgb(image: torch.Tensor) -> torch.Tensor:
r"""Convert an sRGB image to linear RGB. Used in colorspace conversions.
.. image:: _static/img/rgb_to_linear_rgb.png
Args:
image: sRGB Image to be converted to linear RGB of shape :math:`(*,3,H,W)`.
Returns:
linear RGB version of the image with shape of :math:`(*,3,H,W)`.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> output = rgb_to_linear_rgb(input) # 2x3x4x5
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(
f"Input size must have a shape of (*, 3, H, W).Got {image.shape}")
lin_rgb: torch.Tensor = torch.where(image > 0.04045, torch.pow(
((image + 0.055) / 1.055), 2.4), image / 12.92)
return lin_rgb
def linear_rgb_to_rgb(image: torch.Tensor) -> torch.Tensor:
r"""Convert a linear RGB image to sRGB. Used in colorspace conversions.
Args:
image: linear RGB Image to be converted to sRGB of shape :math:`(*,3,H,W)`.
Returns:
sRGB version of the image with shape of shape :math:`(*,3,H,W)`.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> output = linear_rgb_to_rgb(input) # 2x3x4x5
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(
f"Input size must have a shape of (*, 3, H, W).Got {image.shape}")
threshold = 0.0031308
rgb: torch.Tensor = torch.where(
image > threshold, 1.055 *
torch.pow(image.clamp(min=threshold), 1 / 2.4) - 0.055, 12.92 * image
)
return rgb
# --------------------------------------------Inference tools-------------------------------------------- #
def inference_img(model, img, device='cpu'):
h, w, _ = img.shape
# print(img.shape)
if h % 8 != 0 or w % 8 != 0:
img = cv2.copyMakeBorder(img, 8-h % 8, 0, 8-w %
8, 0, cv2.BORDER_REFLECT)
# print(img.shape)
tensor_img = torch.from_numpy(img).permute(2, 0, 1).to(device)
input_t = tensor_img
input_t = input_t/255.0
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
input_t = normalize(input_t)
input_t = input_t.unsqueeze(0).float()
with torch.no_grad():
out = model(input_t)
# print("out",out.shape)
result = out[0][:, -h:, -w:].cpu().numpy()
# print(result.shape)
return result[0]
def log(msg, lvl='info'):
if lvl == 'info':
print(f"***********{msg}****************")
if lvl == 'error':
print(f"!!! Exception: {msg} !!!")
def harmonize(comp, mask, model):
log("Inference started")
if comp is None or mask is None:
log("Empty source")
return np.zeros((16, 16, 3))
comp = comp.convert('RGB')
mask = mask.convert('1')
in_shape = comp.size[::-1]
comp = tf.resize(comp, [model.image_size, model.image_size])
mask = tf.resize(mask, [model.image_size, model.image_size])
compt = tf.to_tensor(comp)
maskt = tf.to_tensor(mask)
res = model.harmonize(compt, maskt)
res = tf.resize(res, in_shape)
log("Inference finished")
return np.uint8((res*255)[0].permute(1, 2, 0).numpy())
def extract_matte(img, back, model):
mask, fg = model.extract(img)
fg_pil = Image.fromarray(np.uint8(fg))
composite = fg + (1 - mask[:, :, None]) * \
np.array(back.resize(mask.shape[::-1]))
composite_pil = Image.fromarray(np.uint8(composite))
return [composite_pil, mask, fg_pil]
def css(height=3, scale=2):
return f".output_image {{height: {height}rem !important; width: {scale}rem !important;}}"