Spaces:
Runtime error
Runtime error
File size: 3,521 Bytes
2a8871c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import cv2
import json
import numpy as np
import os
import torch
from basicsr.utils import FileClient, imfrombytes
from collections import OrderedDict
# ---------------------------- This script is used to parse facial landmarks ------------------------------------- #
# Configurations
save_img = False
scale = 0.5 # 0.5 for official FFHQ (512x512), 1 for others
enlarge_ratio = 1.4 # only for eyes
json_path = 'ffhq-dataset-v2.json'
face_path = 'datasets/ffhq/ffhq_512.lmdb'
save_path = './FFHQ_eye_mouth_landmarks_512.pth'
print('Load JSON metadata...')
# use the official json file in FFHQ dataset
with open(json_path, 'rb') as f:
json_data = json.load(f, object_pairs_hook=OrderedDict)
print('Open LMDB file...')
# read ffhq images
file_client = FileClient('lmdb', db_paths=face_path)
with open(os.path.join(face_path, 'meta_info.txt')) as fin:
paths = [line.split('.')[0] for line in fin]
save_dict = {}
for item_idx, item in enumerate(json_data.values()):
print(f'\r{item_idx} / {len(json_data)}, {item["image"]["file_path"]} ', end='', flush=True)
# parse landmarks
lm = np.array(item['image']['face_landmarks'])
lm = lm * scale
item_dict = {}
# get image
if save_img:
img_bytes = file_client.get(paths[item_idx])
img = imfrombytes(img_bytes, float32=True)
# get landmarks for each component
map_left_eye = list(range(36, 42))
map_right_eye = list(range(42, 48))
map_mouth = list(range(48, 68))
# eye_left
mean_left_eye = np.mean(lm[map_left_eye], 0) # (x, y)
half_len_left_eye = np.max((np.max(np.max(lm[map_left_eye], 0) - np.min(lm[map_left_eye], 0)) / 2, 16))
item_dict['left_eye'] = [mean_left_eye[0], mean_left_eye[1], half_len_left_eye]
# mean_left_eye[0] = 512 - mean_left_eye[0] # for testing flip
half_len_left_eye *= enlarge_ratio
loc_left_eye = np.hstack((mean_left_eye - half_len_left_eye + 1, mean_left_eye + half_len_left_eye)).astype(int)
if save_img:
eye_left_img = img[loc_left_eye[1]:loc_left_eye[3], loc_left_eye[0]:loc_left_eye[2], :]
cv2.imwrite(f'tmp/{item_idx:08d}_eye_left.png', eye_left_img * 255)
# eye_right
mean_right_eye = np.mean(lm[map_right_eye], 0)
half_len_right_eye = np.max((np.max(np.max(lm[map_right_eye], 0) - np.min(lm[map_right_eye], 0)) / 2, 16))
item_dict['right_eye'] = [mean_right_eye[0], mean_right_eye[1], half_len_right_eye]
# mean_right_eye[0] = 512 - mean_right_eye[0] # # for testing flip
half_len_right_eye *= enlarge_ratio
loc_right_eye = np.hstack(
(mean_right_eye - half_len_right_eye + 1, mean_right_eye + half_len_right_eye)).astype(int)
if save_img:
eye_right_img = img[loc_right_eye[1]:loc_right_eye[3], loc_right_eye[0]:loc_right_eye[2], :]
cv2.imwrite(f'tmp/{item_idx:08d}_eye_right.png', eye_right_img * 255)
# mouth
mean_mouth = np.mean(lm[map_mouth], 0)
half_len_mouth = np.max((np.max(np.max(lm[map_mouth], 0) - np.min(lm[map_mouth], 0)) / 2, 16))
item_dict['mouth'] = [mean_mouth[0], mean_mouth[1], half_len_mouth]
# mean_mouth[0] = 512 - mean_mouth[0] # for testing flip
loc_mouth = np.hstack((mean_mouth - half_len_mouth + 1, mean_mouth + half_len_mouth)).astype(int)
if save_img:
mouth_img = img[loc_mouth[1]:loc_mouth[3], loc_mouth[0]:loc_mouth[2], :]
cv2.imwrite(f'tmp/{item_idx:08d}_mouth.png', mouth_img * 255)
save_dict[f'{item_idx:08d}'] = item_dict
print('Save...')
torch.save(save_dict, save_path)
|