Spaces:
Runtime error
Runtime error
import torch | |
from gfpgan.archs.gfpganv1_arch import FacialComponentDiscriminator, GFPGANv1, StyleGAN2GeneratorSFT | |
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean, StyleGAN2GeneratorCSFT | |
def test_stylegan2generatorsft(): | |
"""Test arch: StyleGAN2GeneratorSFT.""" | |
# model init and forward (gpu) | |
if torch.cuda.is_available(): | |
net = StyleGAN2GeneratorSFT( | |
out_size=32, | |
num_style_feat=512, | |
num_mlp=8, | |
channel_multiplier=1, | |
resample_kernel=(1, 3, 3, 1), | |
lr_mlp=0.01, | |
narrow=1, | |
sft_half=False).cuda().eval() | |
style = torch.rand((1, 512), dtype=torch.float32).cuda() | |
condition1 = torch.rand((1, 512, 8, 8), dtype=torch.float32).cuda() | |
condition2 = torch.rand((1, 512, 16, 16), dtype=torch.float32).cuda() | |
condition3 = torch.rand((1, 512, 32, 32), dtype=torch.float32).cuda() | |
conditions = [condition1, condition1, condition2, condition2, condition3, condition3] | |
output = net([style], conditions) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert output[1] is None | |
# -------------------- with return_latents ----------------------- # | |
output = net([style], conditions, return_latents=True) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert len(output[1]) == 1 | |
# check latent | |
assert output[1][0].shape == (8, 512) | |
# -------------------- with randomize_noise = False ----------------------- # | |
output = net([style], conditions, randomize_noise=False) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert output[1] is None | |
# -------------------- with truncation = 0.5 and mixing----------------------- # | |
output = net([style, style], conditions, truncation=0.5, truncation_latent=style) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert output[1] is None | |
def test_gfpganv1(): | |
"""Test arch: GFPGANv1.""" | |
# model init and forward (gpu) | |
if torch.cuda.is_available(): | |
net = GFPGANv1( | |
out_size=32, | |
num_style_feat=512, | |
channel_multiplier=1, | |
resample_kernel=(1, 3, 3, 1), | |
decoder_load_path=None, | |
fix_decoder=True, | |
# for stylegan decoder | |
num_mlp=8, | |
lr_mlp=0.01, | |
input_is_latent=False, | |
different_w=False, | |
narrow=1, | |
sft_half=True).cuda().eval() | |
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() | |
output = net(img) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert len(output[1]) == 3 | |
# check out_rgbs for intermediate loss | |
assert output[1][0].shape == (1, 3, 8, 8) | |
assert output[1][1].shape == (1, 3, 16, 16) | |
assert output[1][2].shape == (1, 3, 32, 32) | |
# -------------------- with different_w = True ----------------------- # | |
net = GFPGANv1( | |
out_size=32, | |
num_style_feat=512, | |
channel_multiplier=1, | |
resample_kernel=(1, 3, 3, 1), | |
decoder_load_path=None, | |
fix_decoder=True, | |
# for stylegan decoder | |
num_mlp=8, | |
lr_mlp=0.01, | |
input_is_latent=False, | |
different_w=True, | |
narrow=1, | |
sft_half=True).cuda().eval() | |
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() | |
output = net(img) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert len(output[1]) == 3 | |
# check out_rgbs for intermediate loss | |
assert output[1][0].shape == (1, 3, 8, 8) | |
assert output[1][1].shape == (1, 3, 16, 16) | |
assert output[1][2].shape == (1, 3, 32, 32) | |
def test_facialcomponentdiscriminator(): | |
"""Test arch: FacialComponentDiscriminator.""" | |
# model init and forward (gpu) | |
if torch.cuda.is_available(): | |
net = FacialComponentDiscriminator().cuda().eval() | |
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() | |
output = net(img) | |
assert len(output) == 2 | |
assert output[0].shape == (1, 1, 8, 8) | |
assert output[1] is None | |
# -------------------- return intermediate features ----------------------- # | |
output = net(img, return_feats=True) | |
assert len(output) == 2 | |
assert output[0].shape == (1, 1, 8, 8) | |
assert len(output[1]) == 2 | |
assert output[1][0].shape == (1, 128, 16, 16) | |
assert output[1][1].shape == (1, 256, 8, 8) | |
def test_stylegan2generatorcsft(): | |
"""Test arch: StyleGAN2GeneratorCSFT.""" | |
# model init and forward (gpu) | |
if torch.cuda.is_available(): | |
net = StyleGAN2GeneratorCSFT( | |
out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=1, sft_half=False).cuda().eval() | |
style = torch.rand((1, 512), dtype=torch.float32).cuda() | |
condition1 = torch.rand((1, 512, 8, 8), dtype=torch.float32).cuda() | |
condition2 = torch.rand((1, 512, 16, 16), dtype=torch.float32).cuda() | |
condition3 = torch.rand((1, 512, 32, 32), dtype=torch.float32).cuda() | |
conditions = [condition1, condition1, condition2, condition2, condition3, condition3] | |
output = net([style], conditions) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert output[1] is None | |
# -------------------- with return_latents ----------------------- # | |
output = net([style], conditions, return_latents=True) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert len(output[1]) == 1 | |
# check latent | |
assert output[1][0].shape == (8, 512) | |
# -------------------- with randomize_noise = False ----------------------- # | |
output = net([style], conditions, randomize_noise=False) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert output[1] is None | |
# -------------------- with truncation = 0.5 and mixing----------------------- # | |
output = net([style, style], conditions, truncation=0.5, truncation_latent=style) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert output[1] is None | |
def test_gfpganv1clean(): | |
"""Test arch: GFPGANv1Clean.""" | |
# model init and forward (gpu) | |
if torch.cuda.is_available(): | |
net = GFPGANv1Clean( | |
out_size=32, | |
num_style_feat=512, | |
channel_multiplier=1, | |
decoder_load_path=None, | |
fix_decoder=True, | |
# for stylegan decoder | |
num_mlp=8, | |
input_is_latent=False, | |
different_w=False, | |
narrow=1, | |
sft_half=True).cuda().eval() | |
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() | |
output = net(img) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert len(output[1]) == 3 | |
# check out_rgbs for intermediate loss | |
assert output[1][0].shape == (1, 3, 8, 8) | |
assert output[1][1].shape == (1, 3, 16, 16) | |
assert output[1][2].shape == (1, 3, 32, 32) | |
# -------------------- with different_w = True ----------------------- # | |
net = GFPGANv1Clean( | |
out_size=32, | |
num_style_feat=512, | |
channel_multiplier=1, | |
decoder_load_path=None, | |
fix_decoder=True, | |
# for stylegan decoder | |
num_mlp=8, | |
input_is_latent=False, | |
different_w=True, | |
narrow=1, | |
sft_half=True).cuda().eval() | |
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() | |
output = net(img) | |
assert output[0].shape == (1, 3, 32, 32) | |
assert len(output[1]) == 3 | |
# check out_rgbs for intermediate loss | |
assert output[1][0].shape == (1, 3, 8, 8) | |
assert output[1][1].shape == (1, 3, 16, 16) | |
assert output[1][2].shape == (1, 3, 32, 32) | |