File size: 3,787 Bytes
49bacc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""Streamlit app for Presidio."""

import json
from json import JSONEncoder

import pandas as pd
import streamlit as st
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
from presidio_anonymizer import AnonymizerEngine

from transformers_recognizer import TransformersRecognizer


import spacy
spacy.cli.download("en_core_web_lg")


# Helper methods
@st.cache(allow_output_mutation=True)
def analyzer_engine():
    """Return AnalyzerEngine."""

    transformers_recognizer = TransformersRecognizer()
    
    registry = RecognizerRegistry()
    registry.add_recognizer(transformers_recognizer)
    registry.load_predefined_recognizers()
    
    analyzer = AnalyzerEngine(registry=registry)
    return analyzer

    
@st.cache(allow_output_mutation=True)
def anonymizer_engine():
    """Return AnonymizerEngine."""
    return AnonymizerEngine()


def get_supported_entities():
    """Return supported entities from the Analyzer Engine."""
    return analyzer_engine().get_supported_entities()


def analyze(**kwargs):
    """Analyze input using Analyzer engine and input arguments (kwargs)."""
    if "entities" not in kwargs or "All" in kwargs["entities"]:
        kwargs["entities"] = None
    return analyzer_engine().analyze(**kwargs)


def anonymize(text, analyze_results):
    """Anonymize identified input using Presidio Abonymizer."""

    res = anonymizer_engine().anonymize(text, analyze_results)
    return res.text


st.set_page_config(page_title="Presidio demo (English)", layout="wide")

# Side bar
st.sidebar.markdown(
    """
Anonymize PII entities with [presidio](https://aka.ms/presidio), spaCy and a [PHI detection Roberta model](https://huggingface.co/obi/deid_roberta_i2b2).
"""
)

st_entities = st.sidebar.multiselect(
    label="Which entities to look for?",
    options=get_supported_entities(),
    default=list(get_supported_entities()),
)

st_threhsold = st.sidebar.slider(
    label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)

st_return_decision_process = st.sidebar.checkbox("Add analysis explanations in json")

st.sidebar.info(
    "Presidio is an open source framework for PII detection and anonymization. "
    "For more info visit [aka.ms/presidio](https://aka.ms/presidio)"
)


# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer...")
engine = analyzer_engine()
analyzer_load_state.empty()


# Create two columns for before and after
col1, col2 = st.columns(2)

# Before:
col1.subheader("Input string:")
st_text = col1.text_area(
    label="Enter text",
    value="Type in some text, "
    "like a phone number (212-141-4544) "
    "or a name (Lebron James).",
    height=400,
)

# After
col2.subheader("Output:")

st_analyze_results = analyze(
    text=st_text,
    entities=st_entities,
    language="en",
    score_threshold=st_threhsold,
    return_decision_process=st_return_decision_process,
)
st_anonymize_results = anonymize(st_text, st_analyze_results)
col2.text_area(label="", value=st_anonymize_results, height=400)


# table result
st.subheader("Findings")
if st_analyze_results:
    df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
    df = df[["entity_type", "start", "end", "score"]].rename(
        {
            "entity_type": "Entity type",
            "start": "Start",
            "end": "End",
            "score": "Confidence",
        },
        axis=1,
    )

    st.dataframe(df, width=1000)
else:
    st.text("No findings")


# json result
class ToDictListEncoder(JSONEncoder):
    """Encode dict to json."""

    def default(self, o):
        """Encode to JSON using to_dict."""
        if o:
            return o.to_dict()
        return []


if st_return_decision_process:
    st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))