import gradio as gr import fitz from PIL import Image import io import json import google.generativeai as genai import os from dotenv import load_dotenv load_dotenv() genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model_vision = genai.GenerativeModel('gemini-pro-vision') model_text = genai.GenerativeModel("gemini-pro") # Global variable or file path to store intermediate data INTERMEDIATE_JSON_PATH = "intermediate_data.json" INTERMEDIATE_JOB_DESC_PATH = "intermediate_job_desc.txt" def load_prompt(filename): """Function to load a prompt from a file""" try: with open(filename, "r") as file: return file.read() except Exception as e: return f"Error loading prompt: {e}" def process_pdf_and_save_job_desc(pdf_file, job_description): if not pdf_file: return None, "No file provided" # Convert PDF to image doc = fitz.open(stream=pdf_file, filetype="pdf") page = doc.load_page(0) pix = page.get_pixmap() img_bytes = pix.tobytes("png") image = Image.open(io.BytesIO(img_bytes)) doc.close() # Further processing with the image # Substitute this with the actual computation or model invocation # For example, using the genai model: # Define the prompt you want to use prompt = load_prompt("prompts/resume_parsing_prompt.txt") response = model_vision.generate_content([prompt, image]) json_data = response.text # Save the JSON data for other tabs to access with open(INTERMEDIATE_JSON_PATH, "w") as json_file: json.dump(json_data, json_file) with open(INTERMEDIATE_JOB_DESC_PATH, "w") as file: file.write(job_description) return image, json_data def generate_interview_questions(): # Assuming json_data is a string containing JSON data # Here, you would customize the prompt to include specific details # from the json_data or pass it directly as part of the prompt. with open(INTERMEDIATE_JSON_PATH, "r") as json_file: json_data = json.load(json_file) prompt = load_prompt("prompts/interview_questions_prompt.txt") + json_data # Generate responses using the model responses = model_text.generate_content(prompt) # Return the generated questions or content return responses.text # Define the new Gradio interface for generating interview questions interview_interface = gr.Interface( fn=generate_interview_questions, inputs=[], outputs=gr.Textbox(label="Generated Interview Questions"), title="Generate Interview Questions" ) def generate_skill_gap_analysis(): try: # Read the saved resume data (JSON) with open(INTERMEDIATE_JSON_PATH, "r") as file: json_data = file.read() # Read the saved job description with open(INTERMEDIATE_JOB_DESC_PATH, "r") as file: job_description = file.read() # Construct a detailed prompt for the Gemini model prompt = load_prompt("prompts/skills_gap_prompt.txt").replace( "job_description", job_description).replace("json_data", json_data) # Call the Gemini model to generate the skill gap analysis response = model_text.generate_content(prompt) # Format and return the skill gap analysis return response.text except Exception as e: return f"An error occurred: {e}" skill_gap_analysis_interface = gr.Interface( fn=generate_skill_gap_analysis, inputs=[], # No inputs outputs=gr.Textbox(label="Skill Gap Analysis"), title="Skill Gap Analysis" ) def generate_cover_letter(): try: # Read the saved job description with open(INTERMEDIATE_JOB_DESC_PATH, "r") as file: job_description = file.read() # Read the saved resume data (JSON) with open(INTERMEDIATE_JSON_PATH, "r") as file: json_data = file.read() # Create a prompt for the cover letter prompt = load_prompt("prompts/cover_letter_prompt.txt").replace( "job_description", job_description).replace("json_data", json_data) # Generate the cover letter using the model response = model_text.generate_content(prompt, stream=True) response.resolve() return response.text except Exception as e: return f"An error occurred: {e}" # Define the Gradio interface for generating a cover letter cover_letter_interface = gr.Interface( fn=generate_cover_letter, inputs=[], outputs=gr.Textbox(label="Generated Cover Letter"), title="Cover Letter Generator" ) def display_json(): # Read and return the JSON data saved by the first tab try: with open(INTERMEDIATE_JSON_PATH, "r") as json_file: json_data = json.load(json_file) return json_data except FileNotFoundError: return "No data available yet. Please run the first tab." def gradio_pdf_interface(pdf_content, job_description): # Wrapper patchwork :c image, _ = process_pdf_and_save_job_desc( pdf_content, job_description) # Get both but only use image return image # Define individual interfaces for each tab pdf_interface = gr.Interface( fn=gradio_pdf_interface, inputs=[gr.File(type="binary"), gr.Textbox(label="Job Description")], outputs=gr.Image(), title="PDF Processing and Job Description" ) json_interface = gr.Interface( fn=display_json, inputs=None, outputs=gr.Textbox(), title="Display JSON") # Combine interfaces into a TabbedInterface demo = gr.TabbedInterface([pdf_interface, json_interface, interview_interface, cover_letter_interface, skill_gap_analysis_interface], [ "Process PDF", "JSON Output", "Interview Questions", "Cover Letter", "Skill Gap Analysis"]) if __name__ == "__main__": demo.launch()