import gradio as gr import fastai from fastai.vision.all import * def label_func(x): if x.name[0] == 'm': return "Mustang" elif x.name[1] == "a": return "Camaro" elif x.name[1] == "h": return "Challenger" learn = load_learner('export-2.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=gr.Label(num_top_classes=3)).launch(share=True)