mancatha commited on
Commit
66fd837
·
1 Parent(s): 67bed37

app-initial

Browse files
Files changed (3) hide show
  1. app.py +57 -0
  2. gitignore +0 -0
  3. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForSequenceClassification
2
+ from transformers import TFAutoModelForSequenceClassification
3
+ from transformers import AutoTokenizer, AutoConfig
4
+ import torch
5
+ import numpy as np
6
+ import pandas as pd
7
+ from scipy.special import softmax
8
+ import gradio as gr
9
+
10
+ # Load the model and tokenizer
11
+ # setup
12
+ model_name = "benmanks/sentiment_analysis_trainer_model"
13
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
14
+ tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
15
+
16
+ # Function
17
+ def preprocess(text):
18
+ # Preprocess text (username and link placeholders)
19
+ new_text = []
20
+ for t in text.split(" "):
21
+ t = '@user' if t.startswith('@') and len(t) > 1 else t
22
+ t = 'http' if t.startswith('http') else t
23
+ new_text.append(t)
24
+ return " ".join(new_text)
25
+
26
+ def sentiment_analysis(text):
27
+ text = preprocess(text)
28
+
29
+ # Tokenize the text
30
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
31
+
32
+ # Make a prediction
33
+ with torch.no_grad():
34
+ outputs = model(**inputs)
35
+
36
+ # Get the predicted class probabilities
37
+ scores = torch.softmax(outputs.logits, dim=1).tolist()[0]
38
+
39
+ # Map the scores to labels
40
+ labels = ['Negative', 'Neutral', 'Positive']
41
+ scores_dict = {label: score for label, score in zip(labels, scores)}
42
+
43
+ return scores_dict
44
+
45
+ title = "Sentiment Analysis Application\n\n\nThis application assesses if a twitter post relating to vaccination is positive,neutral or negative"
46
+
47
+
48
+ demo = gr.Interface(
49
+ fn=sentiment_analysis,
50
+ inputs=gr.Textbox(placeholder="Write your tweet here..."),
51
+ outputs=gr.Label(num_top_classes=3),
52
+ examples=[["The Vaccine is harmful!"],["I cant believe people don't vaccinate their kids"],["FDA think just not worth the AE unfortunately"],["For a vaccine given to healthy"]],
53
+ title=title
54
+
55
+ )
56
+
57
+ demo.launch(share=True)
gitignore ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ transformers
2
+ gradio
3
+ numpy
4
+ scipy
5
+ pandas
6
+ torch