Spaces:
Sleeping
Sleeping
import spaces | |
import random | |
import torch | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from huggingface_hub import snapshot_download | |
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor | |
from diffusers.utils import load_image | |
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from kolors.models.controlnet import ControlNetModel | |
from diffusers import AutoencoderKL | |
from kolors.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import EulerDiscreteScheduler | |
from PIL import Image | |
from annotator.midas import MidasDetector | |
from annotator.dwpose import DWposeDetector | |
from annotator.util import resize_image, HWC3 | |
device = "cuda" | |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") | |
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth") | |
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny") | |
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus") | |
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose") | |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device) | |
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device) | |
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device) | |
ip_img_size = 336 | |
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size ) | |
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline( | |
vae=vae, | |
controlnet = controlnet_depth, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False | |
) | |
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline( | |
vae=vae, | |
controlnet = controlnet_canny, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False | |
) | |
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline( | |
vae=vae, | |
controlnet = controlnet_pose, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False | |
) | |
for pipe in [pipe_depth]: | |
if hasattr(pipe.unet, 'encoder_hid_proj'): | |
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj | |
pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
def process_canny_condition(image, canny_threods=[100,200]): | |
np_image = image.copy() | |
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1]) | |
np_image = np_image[:, :, None] | |
np_image = np.concatenate([np_image, np_image, np_image], axis=2) | |
np_image = HWC3(np_image) | |
return Image.fromarray(np_image) | |
model_midas = MidasDetector() | |
def process_depth_condition_midas(img, res = 1024): | |
h,w,_ = img.shape | |
img = resize_image(HWC3(img), res) | |
result = HWC3(model_midas(img)) | |
result = cv2.resize(result, (w,h)) | |
return Image.fromarray(result) | |
model_dwpose = DWposeDetector() | |
def process_dwpose_condition(image, res=1024): | |
h,w,_ = image.shape | |
img = resize_image(HWC3(image), res) | |
out_res, out_img = model_dwpose(image) | |
result = HWC3(out_img) | |
result = cv2.resize( result, (w,h) ) | |
return Image.fromarray(result) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer_depth(prompt, | |
image = None, | |
ipa_img = None, | |
negative_prompt = "nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", | |
seed = 66, | |
randomize_seed = False, | |
guidance_scale = 5.0, | |
num_inference_steps = 50, | |
controlnet_conditioning_scale = 0.5, | |
control_guidance_end = 0.9, | |
strength = 1.0, | |
ip_scale = 0.5, | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
init_image = resize_image(image, MAX_IMAGE_SIZE) | |
pipe = pipe_depth.to("cuda") | |
pipe.set_ip_adapter_scale([ip_scale]) | |
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE) | |
image = pipe( | |
prompt= prompt , | |
image = init_image, | |
controlnet_conditioning_scale = controlnet_conditioning_scale, | |
control_guidance_end = control_guidance_end, | |
ip_adapter_image=[ipa_img], | |
strength= strength , | |
control_image = condi_img, | |
negative_prompt= negative_prompt , | |
num_inference_steps= num_inference_steps, | |
guidance_scale= guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
return [condi_img, image], seed | |
def infer_canny(prompt, | |
image = None, | |
ipa_img = None, | |
negative_prompt = "nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", | |
seed = 66, | |
randomize_seed = False, | |
guidance_scale = 5.0, | |
num_inference_steps = 50, | |
controlnet_conditioning_scale = 0.5, | |
control_guidance_end = 0.9, | |
strength = 1.0, | |
ip_scale = 0.5, | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
init_image = resize_image(image, MAX_IMAGE_SIZE) | |
pipe = pipe_canny.to("cuda") | |
pipe.set_ip_adapter_scale([ip_scale]) | |
condi_img = process_canny_condition(np.array(init_image)) | |
image = pipe( | |
prompt= prompt , | |
image = init_image, | |
controlnet_conditioning_scale = controlnet_conditioning_scale, | |
control_guidance_end = control_guidance_end, | |
ip_adapter_image=[ipa_img], | |
strength= strength , | |
control_image = condi_img, | |
negative_prompt= negative_prompt , | |
num_inference_steps= num_inference_steps, | |
guidance_scale= guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
return [condi_img, image], seed | |
def infer_pose(prompt, | |
image = None, | |
ipa_img = None, | |
negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯", | |
seed = 66, | |
randomize_seed = False, | |
guidance_scale = 5.0, | |
num_inference_steps = 50, | |
controlnet_conditioning_scale = 0.5, | |
control_guidance_end = 0.9, | |
strength = 1.0, | |
ip_scale = 0.5, | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
init_image = resize_image(image, MAX_IMAGE_SIZE) | |
pipe = pipe_pose.to("cuda") | |
pipe.set_ip_adapter_scale([ip_scale]) | |
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE) | |
image = pipe( | |
prompt= prompt , | |
image = init_image, | |
controlnet_conditioning_scale = controlnet_conditioning_scale, | |
control_guidance_end = control_guidance_end, | |
ip_adapter_image=[ipa_img], | |
strength= strength , | |
control_image = condi_img, | |
negative_prompt= negative_prompt , | |
num_inference_steps= num_inference_steps, | |
guidance_scale= guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
return [condi_img, image], seed | |
canny_examples = [ | |
["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质", | |
"image/woman_2.png", "image/2.png"], | |
] | |
depth_examples = [ | |
["一个漂亮的女孩,最好的质量,超细节,8K画质", | |
"image/1.png","image/woman_1.png"], | |
] | |
pose_examples = [ | |
["一位穿着紫色泡泡袖连衣裙、戴着皇冠和白色蕾丝手套的女孩,超高分辨率,最佳品质,8k画质", | |
"image/woman_3.png","image/woman_4.png"], | |
] | |
css=""" | |
#col-left { | |
margin: 0 auto; | |
max-width: 600px; | |
} | |
#col-right { | |
margin: 0 auto; | |
max-width: 750px; | |
} | |
#button { | |
color: blue; | |
} | |
""" | |
def load_description(fp): | |
with open(fp, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
with gr.Blocks(css=css) as Kolors: | |
gr.HTML(load_description("assets/title.md")) | |
with gr.Row(): | |
with gr.Column(elem_id="col-left"): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt", | |
lines=2 | |
) | |
with gr.Row(): | |
image = gr.Image(label="Image", type="pil") | |
ipa_image = gr.Image(label="IP-Adapter-Image", type="pil") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=10, | |
maximum=50, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
controlnet_conditioning_scale = gr.Slider( | |
label="Controlnet Conditioning Scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.5, | |
) | |
control_guidance_end = gr.Slider( | |
label="Control Guidance End", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.9, | |
) | |
with gr.Row(): | |
strength = gr.Slider( | |
label="Strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
ip_scale = gr.Slider( | |
label="IP_Scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.5, | |
) | |
with gr.Row(): | |
canny_button = gr.Button("Canny", elem_id="button") | |
depth_button = gr.Button("Depth", elem_id="button") | |
pose_button = gr.Button("Pose", elem_id="button") | |
with gr.Column(elem_id="col-right"): | |
result = gr.Gallery(label="Result", show_label=False, columns=2) | |
seed_used = gr.Number(label="Seed Used") | |
with gr.Row(): | |
gr.Examples( | |
fn = infer_canny, | |
examples = canny_examples, | |
inputs = [prompt, image, ipa_image], | |
outputs = [result, seed_used], | |
label = "Canny" | |
) | |
with gr.Row(): | |
gr.Examples( | |
fn = infer_depth, | |
examples = depth_examples, | |
inputs = [prompt, image, ipa_image], | |
outputs = [result, seed_used], | |
label = "Depth" | |
) | |
with gr.Row(): | |
gr.Examples( | |
fn = infer_pose, | |
examples = pose_examples, | |
inputs = [prompt, image, ipa_image], | |
outputs = [result, seed_used], | |
label = "Pose" | |
) | |
canny_button.click( | |
fn = infer_canny, | |
inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale], | |
outputs = [result, seed_used] | |
) | |
depth_button.click( | |
fn = infer_depth, | |
inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale], | |
outputs = [result, seed_used] | |
) | |
pose_button.click( | |
fn = infer_pose, | |
inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale], | |
outputs = [result, seed_used] | |
) | |
Kolors.queue().launch(debug=True) | |