berkaygkv54's picture
first push
19759e2
raw
history blame contribute delete
No virus
9.56 kB
import os.path
import glob
import random
import numpy as np
import logging
import wandb
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from clap_module import create_model
from clap_module import tokenize
from training.logger import setup_logging
from training.data import get_data
from training.train import evaluate
from clap_module.utils import get_tar_path_from_dataset_name, dataset_split
from training.params import parse_args
def find_params_value(file, key):
# find value of params in params_file
with open(file, 'r') as f:
for line in f:
if key + ': ' in line:
return line.split(': ')[1].strip()
return None
def evaluate_zeroshot(model, data, start_epoch, args, writer):
dataloader = data["val"].dataloader
metrics = {}
device = torch.device(args.device)
model.eval()
metrics.update({"epoch": start_epoch})
all_audio_features = []
all_class_labels = []
with torch.no_grad():
for i, batch in enumerate(dataloader):
audios = batch # contains mel_spec, wavform, and longer list
audio_features = model(audios, None, device)
audio_features = F.normalize(audio_features, dim=-1)
all_audio_features.append(audio_features.detach().cpu())
all_class_labels.append(torch.argmax(batch["class_label"], 1).long())
all_audio_features = torch.cat(all_audio_features, dim=0)
all_class_labels = torch.cat(all_class_labels, dim=0)
metrics["num_samples"] = all_audio_features.shape[0]
# get text features
all_texts = ["This is a sound of " + t for t in args.class_index_dict.keys()]
# (yusong): a hack, can make it better
if args.tmodel == "transformer":
from clap_module.tokenizer import tokenize
all_texts = tokenize(all_texts)
else:
from training.data import tokenizer
all_texts = tokenizer(all_texts)
all_text_features = model(None, all_texts, device)
all_text_features = F.normalize(all_text_features, dim=-1).detach().cpu()
# compute similarity
logit_scale_a, logit_scale_t = model(None, None, device)
logit_scale_a = logit_scale_a.cpu()
logits_per_audio = (logit_scale_a * all_audio_features @ all_text_features.t()).detach().cpu()
logits_per_text = logits_per_audio.t().detach().cpu()
ground_truth = all_class_labels.view(-1, 1)
logit = logits_per_audio
ranking = torch.argsort(logit, descending=True)
preds = torch.where(ranking == ground_truth)[1] # (yusong) this line is slow because it uses single thread
preds = preds.detach().cpu().numpy()
metrics[f"{args.datasetnames[0]}_mean_rank"] = preds.mean() + 1
metrics[f"{args.datasetnames[0]}_median_rank"] = np.floor(np.median(preds)) + 1
for k in [1, 5, 10]:
metrics[f"{args.datasetnames[0]}_R@{k}"] = np.mean(preds < k)
# map@10
metrics[f"{args.datasetnames[0]}_mAP@10"] = np.mean(np.where(preds < 10, 1 / (preds + 1), 0.0))
logging.info(
f"Eval Epoch: {start_epoch} "
+ "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()])
)
if args.wandb:
assert wandb is not None, "Please install wandb."
for name, val in metrics.items():
wandb.log({f"val/{name}": val, "epoch": start_epoch})
if __name__ == '__main__':
# (yusong) repeated run might have different metric results.
# This is because we randomly select crop 10s for each audio.
args = parse_args()
if os.path.isdir(args.pretrained):
log_dir = os.path.dirname(args.pretrained)
else:
log_dir = os.path.dirname(os.path.dirname(args.pretrained))
args.log_level = logging.DEBUG if args.debug else logging.INFO
log_path = os.path.join(log_dir, 'out.log')
setup_logging(log_path, args.log_level)
params_file = os.path.join(log_dir, 'params.txt')
seed = 3407
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
cudnn.benchmark = True
cudnn.deterministic = False
pretrained = 'openai'
amodel = find_params_value(params_file, 'amodel')
tmodel = find_params_value(params_file, 'tmodel')
if amodel is None or tmodel is None:
raise ValueError('model type not found in params file')
# set up dummy values for args
args.parallel_eval = False
args.rank = 0
args.local_rank = 0
args.world_size = 1
args.val_frequency = 1
args.epochs = 1
args.precision = 'fp32'
args.save_logs = True
args.wandb = args.report_to == 'wandb'
args.class_index_dict = None
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
args.device = device
if args.remotedata:
for dataset_name in args.datasetnames:
for split in dataset_split[dataset_name]:
if not os.path.exists(f"./json_files/{dataset_name}/{split}"):
os.makedirs(f"./json_files/{dataset_name}/{split}")
os.system(
f"aws s3 cp s3://s-laion-audio/webdataset_tar/{dataset_name}/{split}/sizes.json ./json_files/{dataset_name}/{split}/sizes.json"
)
if args.datasetinfos is None:
args.datasetinfos = ["train", "unbalanced_train", "balanced_train"]
if args.dataset_type == "webdataset":
args.train_data = get_tar_path_from_dataset_name(
args.datasetnames,
args.datasetinfos,
islocal=not args.remotedata,
proportion=args.dataset_proportion,
dataset_path=args.datasetpath,
)
args.val_data = get_tar_path_from_dataset_name(
args.datasetnames,
["valid", "test", "eval"],
islocal=not args.remotedata,
proportion=1,
dataset_path=args.datasetpath,
)
model, model_cfg = create_model(
amodel,
tmodel,
pretrained,
precision='fp32',
device=device,
jit=False,
force_quick_gelu=False,
openai_model_cache_dir=os.path.expanduser(args.openai_model_cache_dir),
skip_params=False,
enable_fusion=args.enable_fusion,
fusion_type=args.fusion_type
) # a hack to get model_cfg
data = get_data(args, model_cfg=model_cfg) # (yusong): hack: no model_cfg needed to get data
writer = None # if use tensorboard, initalize writer here
if args.wandb:
assert wandb is not None, "Please install wandb."
# # find the line with "wandb_notes" and get the value
# wandb_notes = find_params_value(params_file, 'wandb_notes')
# if wandb_notes is None:
# print(f'wandb_notes not found in params file: {params_file}, set to timestamp.')
# wandb_notes = f'experiment_{time.strftime("%Y%m%d-%H%M%S")}'
# wandb_notes = wandb_notes + '-eval-retrieval'
wandb_notes = args.wandb_notes
logging.debug("Starting wandb.")
args.train_sz = data["train"].dataloader.num_samples
if args.val_data is not None:
args.val_sz = data["val"].dataloader.num_samples
# you will have to configure this for your project!
if args.wandb_id is not None:
wandb.init(
project="clap",
id=args.wandb_id,
resume=True
)
else:
wandb.init(
project="clap",
notes=wandb_notes,
name=wandb_notes,
tags=[],
config=vars(args),
)
logging.debug("Finished loading wandb.")
if os.path.isdir(args.pretrained):
all_model_checkpoints = sorted(glob.glob(os.path.join(log_dir, 'checkpoints', '*.pt')), key=os.path.getmtime)
else:
all_model_checkpoints = [args.pretrained]
for model_path in all_model_checkpoints:
args.checkpoint_path = os.path.dirname(model_path)
model, model_cfg = create_model(
amodel,
tmodel,
pretrained,
precision='fp32',
device=device,
jit=False,
force_quick_gelu=False,
openai_model_cache_dir=os.path.expanduser(args.openai_model_cache_dir),
skip_params=False,
enable_fusion=args.enable_fusion,
fusion_type=args.fusion_type
)
# load model
checkpoint = torch.load(model_path, map_location=device)
if "epoch" in checkpoint:
# resuming a train checkpoint w/ epoch and optimizer state
start_epoch = checkpoint["epoch"]
sd = checkpoint["state_dict"]
if next(iter(sd.items()))[0].startswith(
"module"
):
sd = {k[len("module."):]: v for k, v in sd.items()}
model.load_state_dict(sd)
logging.info(
f"=> resuming checkpoint '{model_path}' (epoch {start_epoch})"
)
else:
# loading a bare (model only) checkpoint for fine-tune or evaluation
model.load_state_dict(checkpoint)
start_epoch = 0
model.to(device)
model.eval()
for param in model.parameters():
param.requires_grad = False
evaluate_zeroshot(model, data, start_epoch, args, writer)