import json import logging import os import pathlib import re from copy import deepcopy from pathlib import Path from packaging import version import torch import transformers from .model import CLAP, convert_weights_to_fp16 from .openai import load_openai_model from .pretrained import get_pretrained_url, download_pretrained from .transform import image_transform _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs def _natural_key(string_): return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())] def _rescan_model_configs(): global _MODEL_CONFIGS config_ext = (".json",) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f"*{ext}")) for cf in config_files: with open(cf, "r") as f: model_cfg = json.load(f) if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")): _MODEL_CONFIGS[cf.stem] = model_cfg _MODEL_CONFIGS = { k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])) } _rescan_model_configs() # initial populate of model config registry def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True): checkpoint = torch.load(checkpoint_path, map_location=map_location) if isinstance(checkpoint, dict) and "state_dict" in checkpoint: state_dict = checkpoint["state_dict"] else: state_dict = checkpoint if skip_params: if next(iter(state_dict.items()))[0].startswith("module"): state_dict = {k[7:]: v for k, v in state_dict.items()} # removing position_ids to maintain compatibility with latest transformers update if version.parse(transformers.__version__) >= version.parse("4.31.0"): del state_dict["text_branch.embeddings.position_ids"] # for k in state_dict: # if k.startswith('transformer'): # v = state_dict.pop(k) # state_dict['text_branch.' + k[12:]] = v return state_dict def create_model( amodel_name: str, tmodel_name: str, pretrained: str = "", precision: str = "fp32", device: torch.device = torch.device("cpu"), jit: bool = False, force_quick_gelu: bool = False, openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"), skip_params=True, pretrained_audio: str = "", pretrained_text: str = "", enable_fusion: bool = False, fusion_type: str = 'None' # pretrained_image: bool = False, ): amodel_name = amodel_name.replace( "/", "-" ) # for callers using old naming with / in ViT names pretrained_orig = pretrained pretrained = pretrained.lower() if pretrained == "openai": if amodel_name in _MODEL_CONFIGS: logging.info(f"Loading {amodel_name} model config.") model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) else: logging.error( f"Model config for {amodel_name} not found; available models {list_models()}." ) raise RuntimeError(f"Model config for {amodel_name} not found.") logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.") # Hard Code in model name model_cfg["text_cfg"]["model_type"] = tmodel_name model = load_openai_model( "ViT-B-16", model_cfg, device=device, jit=jit, cache_dir=openai_model_cache_dir, enable_fusion=enable_fusion, fusion_type=fusion_type ) # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372 if precision == "amp" or precision == "fp32": model = model.float() else: if amodel_name in _MODEL_CONFIGS: logging.info(f"Loading {amodel_name} model config.") model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) else: logging.error( f"Model config for {amodel_name} not found; available models {list_models()}." ) raise RuntimeError(f"Model config for {amodel_name} not found.") if force_quick_gelu: # override for use of QuickGELU on non-OpenAI transformer models model_cfg["quick_gelu"] = True # if pretrained_image: # if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}): # # pretrained weight loading for timm models set via vision_cfg # model_cfg['vision_cfg']['timm_model_pretrained'] = True # else: # assert False, 'pretrained image towers currently only supported for timm models' model_cfg["text_cfg"]["model_type"] = tmodel_name model_cfg["enable_fusion"] = enable_fusion model_cfg["fusion_type"] = fusion_type model = CLAP(**model_cfg) if pretrained: checkpoint_path = "" url = get_pretrained_url(amodel_name, pretrained) if url: checkpoint_path = download_pretrained(url, root=openai_model_cache_dir) elif os.path.exists(pretrained_orig): checkpoint_path = pretrained_orig if checkpoint_path: logging.info(f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained}).") ckpt = load_state_dict(checkpoint_path, skip_params=True) model.load_state_dict(ckpt) param_names = [n for n, p in model.named_parameters()] for n in param_names: print(n, "\t", "Loaded" if n in ckpt else "Unloaded") else: logging.warning( f"Pretrained weights ({pretrained}) not found for model {amodel_name}." ) raise RuntimeError( f"Pretrained weights ({pretrained}) not found for model {amodel_name}." ) if pretrained_audio: if amodel_name.startswith('PANN'): if 'Cnn14_mAP' in pretrained_audio: # official checkpoint audio_ckpt = torch.load(pretrained_audio, map_location='cpu') audio_ckpt = audio_ckpt['model'] keys = list(audio_ckpt.keys()) for key in keys: if 'spectrogram_extractor' not in key and 'logmel_extractor' not in key: v = audio_ckpt.pop(key) audio_ckpt['audio_branch.' + key] = v elif os.path.basename(pretrained_audio).startswith('PANN'): # checkpoint trained via HTSAT codebase audio_ckpt = torch.load(pretrained_audio, map_location='cpu') audio_ckpt = audio_ckpt['state_dict'] keys = list(audio_ckpt.keys()) for key in keys: if key.startswith('sed_model'): v = audio_ckpt.pop(key) audio_ckpt['audio_branch.' + key[10:]] = v elif os.path.basename(pretrained_audio).startswith('finetuned'): # checkpoint trained via linear probe codebase audio_ckpt = torch.load(pretrained_audio, map_location='cpu') else: raise ValueError('Unknown audio checkpoint') elif amodel_name.startswith('HTSAT'): if 'HTSAT_AudioSet_Saved' in pretrained_audio: # official checkpoint audio_ckpt = torch.load(pretrained_audio, map_location='cpu') audio_ckpt = audio_ckpt['state_dict'] keys = list(audio_ckpt.keys()) for key in keys: if key.startswith('sed_model') and ('spectrogram_extractor' not in key and 'logmel_extractor' not in key): v = audio_ckpt.pop(key) audio_ckpt['audio_branch.' + key[10:]] = v elif os.path.basename(pretrained_audio).startswith('HTSAT'): # checkpoint trained via HTSAT codebase audio_ckpt = torch.load(pretrained_audio, map_location='cpu') audio_ckpt = audio_ckpt['state_dict'] keys = list(audio_ckpt.keys()) for key in keys: if key.startswith('sed_model'): v = audio_ckpt.pop(key) audio_ckpt['audio_branch.' + key[10:]] = v elif os.path.basename(pretrained_audio).startswith('finetuned'): # checkpoint trained via linear probe codebase audio_ckpt = torch.load(pretrained_audio, map_location='cpu') else: raise ValueError('Unknown audio checkpoint') else: raise f'this audio encoder pretrained checkpoint is not support' model.load_state_dict(audio_ckpt, strict=False) logging.info(f"Loading pretrained {amodel_name} weights ({pretrained_audio}).") param_names = [n for n, p in model.named_parameters()] for n in param_names: print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded") model.to(device=device) if precision == "fp16": assert device.type != "cpu" convert_weights_to_fp16(model) if jit: model = torch.jit.script(model) return model, model_cfg def create_model_and_transforms( model_name: str, pretrained: str = "", precision: str = "fp32", device: torch.device = torch.device("cpu"), jit: bool = False, force_quick_gelu: bool = False, # pretrained_image: bool = False, ): model = create_model( model_name, pretrained, precision, device, jit, force_quick_gelu=force_quick_gelu, # pretrained_image=pretrained_image ) preprocess_train = image_transform(model.visual.image_size, is_train=True) preprocess_val = image_transform(model.visual.image_size, is_train=False) return model, preprocess_train, preprocess_val def list_models(): """enumerate available model architectures based on config files""" return list(_MODEL_CONFIGS.keys()) def add_model_config(path): """add model config path or file and update registry""" if not isinstance(path, Path): path = Path(path) _MODEL_CONFIG_PATHS.append(path) _rescan_model_configs()