bertin-gpt-j-6B / gradio_app.py
versae's picture
Update demo
e50471b
import os
import random
import string
import gradio as gr
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
# Monkey patch
import inspect
from gradio import routes
from typing import List, Type
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler())
DEBUG = os.environ.get("DEBUG", "false")[0] in "ty1"
HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
DEVICE = os.environ.get("DEVICE", "cpu") # cuda:0
if DEVICE != "cpu" and not torch.cuda.is_available():
DEVICE = "cpu"
logger.info(f"DEVICE {DEVICE}")
DTYPE = getattr(
torch,
os.environ.get("DTYPE", ""),
torch.float32 if DEVICE == "cpu" else torch.float16
)
LOW_CPU_MEM = bool(os.environ.get("LOW_CPU_MEM", False if DEVICE == "cpu" else True))
MODEL_NAME = os.environ.get("MODEL_NAME", "bertin-project/bertin-gpt-j-6B")
MODEL_REVISION = os.environ.get("MODEL_REVISION", "main")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 1024))
display_model_name = "BERTIN GPT-J-6B" if MODEL_NAME == "bertin-project/bertin-gpt-j-6B" else MODEL_NAME.upper()
HEADER_INFO = f"""
# {display_model_name}
Spanish {display_model_name} Model.
""".strip()
LOGO = "https://huggingface.co/bertin-project/bertin-roberta-base-spanish/resolve/main/images/bertin.png"
HEADER = f"""
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
<style>
.ltr,
textarea {{
font-family: Roboto !important;
text-align: left;
direction: ltr !important;
}}
.ltr-box {{
border-bottom: 1px solid #ddd;
padding-bottom: 20px;
}}
.rtl {{
text-align: left;
direction: ltr !important;
}}
span.result-text {{
padding: 3px 3px;
line-height: 32px;
}}
span.generated-text {{
background-color: rgb(118 200 147 / 13%);
}}
</style>
<div align=center>
<img src="{LOGO}" width=150/>
# {display_model_name}
BERTIN proporciona una serie de modelos de lenguaje en Español entrenados en abierto.
Este modelo ha sido entrenado con [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) en TPUs proporcionadas por Google a través del programa Tensor Research Cloud, a partir del modelo [GPT-J de EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B) con el corpus [mC4-es-sampled (gaussian)](https://huggingface.co/datasets/bertin-project/mc4-es-sampled). Esta demo funciona sobre una GPU proporcionada por HuggingFace.
</div>
"""
FOOTER = f"""
<div align=center>
Para más información, visite el repositorio del modelo: <a href="https://huggingface.co/{MODEL_NAME}">{display_model_name}</a>.
<img src="https://visitor-badge.glitch.me/badge?page_id=spaces/{MODEL_NAME}"/>
<div align=center>
""".strip()
EXAMPLES = [
"",
"Érase una vez,",
"¿Cuál es la capital de Francia? Respuesta:",
"En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un hidalgo de los de lanza en astillero, adarga antigua, rocín flaco y galgo corredor.",
"""Los templos egipcios fueron construidos para el culto oficial de los dioses y la conmemoración de los faraones del Antiguo Egipto en las regiones bajo su dominio. Los templos eran vistos como el hogar de los dioses o faraones deificados a quienes eran dedicados, y en ellos los faraones y el clero egipcio llevaban a cabo diversos rituales, las funciones centrales de la religión egipcia: realizar ofrendas a sus dioses, recrear pasajes mitológicos mediante festivales y protegerse de las fuerzas del caos. Estos rituales eran vistos como necesarios para que los dioses mantuvieran la maat, el orden divino del universo.
El cuidado del hogar de los dioses era obligación de los faraones, que dedicaron ingentes cantidades de recursos para la construcción y el mantenimiento de los templos. Por necesidad, los faraones delegaban la mayoría de los rituales en una amplia casta sacerdotal, aunque la mayor parte del pueblo llano permanecía al margen de la participación directa en las ceremonias por tener prohibido el acceso a las zonas más sagradas de los templos. A pesar de ello, el templo siempre fue un importante centro religioso para todos los egipcios, que iban a ellos a rezar, realizar ofrendas y buscar la guía de los oráculos.
Pregunta: ¿Quién cuidaba del hogar los dioses?
Respuesta:""",
]
AGENT = os.environ.get("AGENT_NAME", "BERTIN")
PREV = "PREV"
USER = "ENTREVISTADOR"
CONTEXT = """La siguiente conversación es un extracto de una entrevista a {AGENT} celebrada en Madrid para Radio Televisión Española:
{USER}: Bienvenido, {AGENT}. Un placer tenerlo hoy con nosotros.
{AGENT}: Gracias. El placer es mío."""
class Normalizer:
def remove_repetitions(self, text):
"""Remove repetitions"""
first_ocurrences = []
for sentence in text.split("."):
if sentence not in first_ocurrences:
first_ocurrences.append(sentence)
return '.'.join(first_ocurrences)
def trim_last_sentence(self, text):
"""Trim last sentence if incomplete"""
return text[:text.rfind(".") + 1]
def clean_txt(self, text):
return self.trim_last_sentence(self.remove_repetitions(text))
class TextGeneration:
def __init__(self):
self.tokenizer = None
self.generator = None
self.task = "text-generation"
self.model_name_or_path = MODEL_NAME
set_seed(42)
def load(self):
logger.info("Loading model...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name_or_path, revision=MODEL_REVISION, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
)
self.tokenizer_prefix_space = AutoTokenizer.from_pretrained(
self.model_name_or_path, add_prefix_space=True, revision=MODEL_REVISION, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name_or_path, revision=MODEL_REVISION,
use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
torch_dtype=DTYPE, low_cpu_mem_usage=LOW_CPU_MEM,
).to(device=DEVICE, non_blocking=False)
_ = self.model.eval()
device_number = -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
self.generator = pipeline(self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
logger.info("Loading model done.")
# with torch.no_grad():
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
# generated = tokenizer.batch_decode(gen_tokens)[0]
# return generated
def generate(self, text, generation_kwargs, previous_text=None):
do_clean = generation_kwargs.pop("do_clean", False)
bad_words = generation_kwargs.pop("bad_words", "")
if bad_words:
generation_kwargs["bad_words_ids"] = self.tokenizer_prefix_space(
[word.strip() for word in bad_words.split(",")], add_special_tokens=False
).input_ids
if "repetition_penalty" in generation_kwargs:
generation_kwargs["repetition_penalty"] = float(generation_kwargs["repetition_penalty"])
input_text = previous_text or text
# max_length = len(self.tokenizer(input_text)["input_ids"]) + generation_kwargs["max_length"]
# generation_kwargs["max_length"] = min(max_length, self.model.config.n_positions)
generation_kwargs["max_new_tokens"] = generation_kwargs.pop("max_length", 50)
generated_text = None
if input_text:
pre_input_text = ""
input_ids = self.tokenizer(input_text).input_ids
if len(input_ids) + generation_kwargs["max_new_tokens"] >= 2048:
prompt_cutoff = 2048 - generation_kwargs["max_new_tokens"] + 1
pre_input_text = self.tokenizer.decode(input_ids[:-prompt_cutoff])
input_text = self.tokenizer.decode(input_ids[-prompt_cutoff:])
for _ in range(10):
generated_text = pre_input_text + (" " if do_clean else "") + self.generator(
input_text,
**generation_kwargs,
)[0]["generated_text"]
input_text = self.tokenizer.decode(input_ids)
if generated_text.strip().startswith(input_text):
generated_text = generated_text.replace(input_text, "", 1).strip()
if do_clean:
generated_text = cleaner.clean_txt(generated_text)
if generated_text:
if previous_text and previous_text != text:
diff = [
(text, None), (previous_text.replace(text, " ", 1).strip(), PREV), (generated_text, AGENT)
]
else:
diff = [(text, None), (generated_text, AGENT)]
return (
input_text + " " + generated_text,
diff
)
if not generated_text:
return (
"",
[(f"Tras 10 intentos {AGENT} no generó nada. Pruebe cambiando las opciones.", "ERROR")]
)
return (
"",
[("Debe escribir algo primero.", "ERROR")]
)
#@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
#@st.cache(allow_output_mutation=True)
#@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
def load_text_generator():
text_generator = TextGeneration()
text_generator.load()
return text_generator
cleaner = Normalizer()
generator = load_text_generator()
def complete_with_gpt(text, max_length, top_k, top_p, penalty_alpha, num_beams, temperature, repetition_penalty, no_repeat_ngram_size, bad_words, do_sample, do_clean):
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"penalty_alpha": penalty_alpha,
"num_beams": num_beams,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"no_repeat_ngram_size": no_repeat_ngram_size,
"bad_words": bad_words,
"do_sample": do_sample,
"do_clean": do_clean,
}
return generator.generate(text, generation_kwargs)
def expand_with_gpt(hidden, text, max_length, top_k, top_p, penalty_alpha, num_beams, temperature, repetition_penalty, no_repeat_ngram_size, bad_words, do_sample, do_clean):
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"penalty_alpha": penalty_alpha,
"num_beams": num_beams,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"no_repeat_ngram_size": no_repeat_ngram_size,
"bad_words": bad_words,
"do_sample": do_sample,
"do_clean": do_clean,
}
return generator.generate(text, generation_kwargs, previous_text=hidden)
def chat_with_gpt(agent, user, context, user_message, history, max_length, top_k, top_p, penalty_alpha, num_beams, temperature, repetition_penalty, no_repeat_ngram_size, bad_words, do_sample, do_clean):
# agent = AGENT
# user = USER
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"penalty_alpha": penalty_alpha,
"num_beams": num_beams,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"no_repeat_ngram_size": no_repeat_ngram_size,
"bad_words": bad_words,
"do_sample": do_sample,
"do_clean": do_clean,
# "num_return_sequences": 1,
# "return_full_text": False,
}
message = user_message.split(" ", 1)[0].capitalize() + " " + user_message.split(" ", 1)[-1]
history = history or [] #[(f"{user}: Bienvenido. Encantado de tenerle con nosotros.", f"{agent}: Un placer, muchas gracias por la invitación.")]
context = context.format(USER=user or USER, AGENT=agent or AGENT).strip()
if context[-1] not in ".:":
context += "."
context_length = len(context.split())
history_take = 0
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
while len(history_context.split()) > generator.model.config.n_positions - (generation_kwargs["max_length"] + context_length):
history_take += 1
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
if history_take >= generator.model.config.n_positions:
break
context += history_context
for _ in range(5):
prompt = f"{context}\n\n{user}: {message}.\n"
response = generator.generate(prompt, generation_kwargs)[0]
if DEBUG:
print("\n-----\n" + response + "\n-----\n")
# response = response.split("\n")[-1]
# if agent in response and response.split(agent)[-1]:
# response = response.split(agent)[-1]
# if user in response and response.split(user)[-1]:
# response = response.split(user)[-1]
# Take the first response
response = [
r for r in response.replace(prompt, "").split(f"{AGENT}:") if r.strip()
][0].split(USER)[0].replace(f"{AGENT}:", "\n").strip()
if response[0] in string.punctuation:
response = response[1:].strip()
if response.strip().startswith(f"{user}: {message}"):
response = response.strip().split(f"{user}: {message}")[-1]
if response.replace(".", "").strip() and message.replace(".", "").strip() != response.replace(".", "").strip():
break
if DEBUG:
print()
print("CONTEXT:")
print(context)
print()
print("MESSAGE")
print(message)
print()
print("RESPONSE:")
print(response)
if not response.strip():
response = random.choice(["No sé muy bien cómo contestar a eso.", "No puedo contestar con seguridad.", "Prefiero no contestar.", "Ni idea.", "¿Podemos cambiar de tema?"])
history.append((user_message, response))
return history, history, ""
# css="#htext span {white-space: pre}"
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
with gr.Box():
gr.Markdown("Opciones")
with gr.Tabs():
with gr.TabItem("Generación"):
max_length = gr.Slider(
label='Palabras a generar',
# help="Número máximo (aproximado) de palabras a generar.",
minimum=1,
maximum=MAX_LENGTH,
value=50,
step=1
)
top_k = gr.Slider(
label='Top-k',
# help="Número de palabras con alta probabilidad a mantener para el filtrado `top-k`",
minimum=0,
maximum=80,
value=50,
step=1
)
top_p = gr.Slider(
label='Top-p',
# help="Solo las palabras más probables con probabilidades que sumen `top_p` o más se mantienen para la generación.",
minimum=0.01,
maximum=5.0,
value=0.95,
step=0.01
)
penalty_alpha = gr.Slider(
label='Penalización (alpha)',
# help="Penalización para contrastive search.",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01
)
num_beams = gr.Slider(
label='Haces (beams)',
# help="Número de beams para búsqueda.",
minimum=1,
maximum=50,
value=1,
step=1
)
temperature = gr.Slider(
label='Temperatura',
# help="Valor utilizado para modular las probabilidades de las siguientes palabras generadas.",
minimum=0.0,
maximum=10.0,
value=0.8,
step=0.05
)
do_sample = gr.Checkbox(
label='¿Muestrear?',
value = True,
# options=(True, False),
# help="Si no se muestrea se usará una decodificación voraz (_greedy_).",
)
do_clean = gr.Checkbox(
label='¿Limpiar texto?',
value = False,
# options=(True, False),
# help="Si eliminar o no las palabras repetidas y recortar las últimas frases sin terminar.",
)
with gr.TabItem("Control de repetición"):
repetition_penalty = gr.Slider(
label='Penalización por repetición',
help="Un valor de 1 significa no penalización.",
minimum=1.0,
maximum=10.0,
value=1.0,
step=0.01
)
no_repeat_ngram_size = gr.Slider(
label='No repetir ngrams de tamaño',
minimum=0,
maximum=10,
value=0,
step=1
)
bad_words = gr.Textbox(
label="Palabras a evitar",
info="Lista de palabras separadas por comas",
lines=1,
value="",
)
with gr.Accordion("Estrategias", open=False):
gr.Markdown("""
- **greedy decoding** si `num_beams=1` y `do_sample=False`
- **contrastive search** si `penalty_alpha>0.0` y `top_k>1`
- **multinomial sampling** si `num_beams=1` y `do_sample=True`
- **beam-search decoding** si `num_beams>1` y `do_sample=False`
- **beam-search multinomial sampling** si `num_beams>1` y `do_sample=True`
""")
with gr.Column(scale=4):
with gr.Tabs():
with gr.TabItem("Generar"):
textbox = gr.Textbox(label="Texto", placeholder="Escriba algo (o seleccione un ejemplo) y pulse 'Generar'...", lines=8)
examples = gr.Dropdown(label="Ejemplos", choices=EXAMPLES, value=None, type="value")
hidden = gr.Textbox(visible=False, show_label=False)
with gr.Box():
# output = gr.Markdown()
output = gr.HighlightedText(
elem_id="htext",
label="Resultado",
combine_adjacent=True,
).style(
color_map={AGENT: "green", "ERROR": "red", PREV: "blue"},
)
with gr.Row():
generate_btn = gr.Button("Generar")
generate_btn.click(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, penalty_alpha, num_beams, temperature, repetition_penalty, no_repeat_ngram_size, bad_words, do_sample, do_clean], outputs=[hidden, output], api_name="generate")
expand_btn = gr.Button("Añadir")
expand_btn.click(expand_with_gpt, inputs=[hidden, textbox, max_length, top_k, top_p, penalty_alpha, num_beams, temperature, repetition_penalty, no_repeat_ngram_size, bad_words, do_sample, do_clean], outputs=[hidden, output])
edit_btn = gr.Button("Editar", variant="secondary")
edit_btn.click(lambda x: (x, "", []), inputs=[hidden], outputs=[textbox, hidden, output])
clean_btn = gr.Button("Borrar", variant="secondary")
clean_btn.click(lambda: ("", "", [], ""), inputs=[], outputs=[textbox, hidden, output, examples])
examples.change(lambda x: x, inputs=[examples], outputs=[textbox])
with gr.TabItem("Charlar") as tab_chat:
# tab_chat.select(lambda: 25, inputs=[], outputs=[max_length])
context = gr.Textbox(label="Contexto", value=CONTEXT, lines=5)
with gr.Row():
agent = gr.Textbox(label="Agente", value=AGENT)
user = gr.Textbox(label="Usuario", value=USER)
history = gr.Variable(value=[])
chatbot = gr.Chatbot().style(color_map=("green", "gray"))
with gr.Row():
message = gr.Textbox(placeholder="Escriba aquí su mensaje y pulse 'Enviar'", show_label=False)
chat_btn = gr.Button("Enviar")
chat_btn.click(chat_with_gpt, inputs=[agent, user, context, message, history, max_length, top_k, top_p, penalty_alpha, num_beams, temperature, repetition_penalty, no_repeat_ngram_size, bad_words, do_sample, do_clean], outputs=[chatbot, history, message])
gr.Markdown(FOOTER)
# with gr.Interface(lambda: None, inputs=["text", max_length, top_k, top_p, penalty_alpha, num_beams, temperature, do_sample, do_clean], outputs=[hidden, output]) as iface:
# demo.examples = None
# demo.predict_durations = []
# demo.input_components = iface.input_components
# demo.output_components = iface.output_components
demo.queue()
demo.launch(share=True)