Spaces:
Runtime error
Runtime error
Add API support
Browse files- gradio_app.py +34 -15
gradio_app.py
CHANGED
@@ -7,6 +7,31 @@ import torch
|
|
7 |
from transformers import pipeline, set_seed
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
logger = logging.getLogger()
|
11 |
logger.addHandler(logging.StreamHandler())
|
12 |
|
@@ -149,27 +174,18 @@ class TextGeneration:
|
|
149 |
generated_text = generated_text.replace(text, "", 1).strip()
|
150 |
if generated_text:
|
151 |
return (
|
152 |
-
text,
|
153 |
text + " " + generated_text,
|
154 |
[(text, None), (generated_text, "BERTIN")]
|
155 |
)
|
156 |
if not generated_text:
|
157 |
return (
|
158 |
-
"",
|
159 |
"",
|
160 |
[("Tras 10 intentos BERTIN no generó nada. Pruebe cambiando las opciones.", "ERROR")]
|
161 |
)
|
162 |
return (
|
163 |
-
"",
|
164 |
"",
|
165 |
[("Debe escribir algo primero.", "ERROR")]
|
166 |
)
|
167 |
-
# return (text + " " + generated_text,
|
168 |
-
# f'<p class="ltr ltr-box">'
|
169 |
-
# f'<span class="result-text">{text} <span>'
|
170 |
-
# f'<span class="result-text generated-text">{generated_text}</span>'
|
171 |
-
# f'</p>'
|
172 |
-
# )
|
173 |
|
174 |
|
175 |
#@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
|
@@ -234,7 +250,7 @@ def chat_with_gpt(user, agent, context, user_message, history, max_length, top_k
|
|
234 |
break
|
235 |
context += history_context
|
236 |
for _ in range(5):
|
237 |
-
response = generator.generate(f"{context}\n\n{user}: {message}.\n", generation_kwargs)[
|
238 |
if DEBUG:
|
239 |
print("\n-----" + response + "-----\n")
|
240 |
response = response.split("\n")[-1]
|
@@ -325,9 +341,9 @@ with gr.Blocks() as demo:
|
|
325 |
output = gr.HighlightedText(label="Resultado", combine_adjacent=True, color_map={"BERTIN": "green", "ERROR": "red"})
|
326 |
with gr.Row():
|
327 |
generate_btn = gr.Button("Generar")
|
328 |
-
generate_btn.click(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[
|
329 |
expand_btn = gr.Button("Añadir")
|
330 |
-
expand_btn.click(expand_with_gpt, inputs=[hidden, textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[
|
331 |
|
332 |
edit_btn = gr.Button("Editar", variant="secondary")
|
333 |
edit_btn.click(lambda x: (x, "", []), inputs=[hidden], outputs=[textbox, hidden, output])
|
@@ -346,10 +362,13 @@ with gr.Blocks() as demo:
|
|
346 |
with gr.Row():
|
347 |
message = gr.Textbox(placeholder="Escriba aquí su mensaje y pulse 'Enviar'", show_label=False)
|
348 |
chat_btn = gr.Button("Enviar")
|
349 |
-
chat_btn.click(chat_with_gpt, inputs=[agent, user, context, message, history, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[chatbot, history, message])
|
350 |
gr.Markdown(FOOTER)
|
351 |
|
352 |
-
|
|
|
|
|
|
|
|
|
353 |
|
354 |
demo.launch()
|
355 |
-
# gr.Interface(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output]).launch()
|
|
|
7 |
from transformers import pipeline, set_seed
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
import logging
|
10 |
+
|
11 |
+
|
12 |
+
# Monkey patch
|
13 |
+
import inspect
|
14 |
+
from gradio import routes
|
15 |
+
from typing import List, Type
|
16 |
+
|
17 |
+
def get_types(cls_set: List[Type], component: str):
|
18 |
+
docset = []
|
19 |
+
types = []
|
20 |
+
if component == "input":
|
21 |
+
for cls in cls_set:
|
22 |
+
doc = inspect.getdoc(cls)
|
23 |
+
doc_lines = doc.split("\n")
|
24 |
+
docset.append(doc_lines[1].split(":")[-1])
|
25 |
+
types.append(doc_lines[1].split(")")[0].split("(")[-1])
|
26 |
+
else:
|
27 |
+
for cls in cls_set:
|
28 |
+
doc = inspect.getdoc(cls)
|
29 |
+
doc_lines = doc.split("\n")
|
30 |
+
docset.append(doc_lines[-1].split(":")[-1])
|
31 |
+
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
|
32 |
+
return docset, types
|
33 |
+
routes.get_types = get_types
|
34 |
+
|
35 |
logger = logging.getLogger()
|
36 |
logger.addHandler(logging.StreamHandler())
|
37 |
|
|
|
174 |
generated_text = generated_text.replace(text, "", 1).strip()
|
175 |
if generated_text:
|
176 |
return (
|
|
|
177 |
text + " " + generated_text,
|
178 |
[(text, None), (generated_text, "BERTIN")]
|
179 |
)
|
180 |
if not generated_text:
|
181 |
return (
|
|
|
182 |
"",
|
183 |
[("Tras 10 intentos BERTIN no generó nada. Pruebe cambiando las opciones.", "ERROR")]
|
184 |
)
|
185 |
return (
|
|
|
186 |
"",
|
187 |
[("Debe escribir algo primero.", "ERROR")]
|
188 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
|
191 |
#@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
|
|
|
250 |
break
|
251 |
context += history_context
|
252 |
for _ in range(5):
|
253 |
+
response = generator.generate(f"{context}\n\n{user}: {message}.\n", generation_kwargs)[0]
|
254 |
if DEBUG:
|
255 |
print("\n-----" + response + "-----\n")
|
256 |
response = response.split("\n")[-1]
|
|
|
341 |
output = gr.HighlightedText(label="Resultado", combine_adjacent=True, color_map={"BERTIN": "green", "ERROR": "red"})
|
342 |
with gr.Row():
|
343 |
generate_btn = gr.Button("Generar")
|
344 |
+
generate_btn.click(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output])
|
345 |
expand_btn = gr.Button("Añadir")
|
346 |
+
expand_btn.click(expand_with_gpt, inputs=[hidden, textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output])
|
347 |
|
348 |
edit_btn = gr.Button("Editar", variant="secondary")
|
349 |
edit_btn.click(lambda x: (x, "", []), inputs=[hidden], outputs=[textbox, hidden, output])
|
|
|
362 |
with gr.Row():
|
363 |
message = gr.Textbox(placeholder="Escriba aquí su mensaje y pulse 'Enviar'", show_label=False)
|
364 |
chat_btn = gr.Button("Enviar")
|
365 |
+
chat_btn.click(chat_with_gpt, inputs=[agent, user, context, message, history, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[chatbot, history, message]))
|
366 |
gr.Markdown(FOOTER)
|
367 |
|
368 |
+
with gr.Interface(lambda: None, inputs=["text", max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output]) as iface:
|
369 |
+
demo.examples = None
|
370 |
+
demo.predict_durations = []
|
371 |
+
demo.input_components = iface.input_components
|
372 |
+
demo.output_components = iface.output_components
|
373 |
|
374 |
demo.launch()
|
|