oahzxl's picture
update
ab7be96
raw
history blame
4.55 kB
import torch
import torch.nn as nn
import torch.utils.checkpoint
from videosys.models.modules.normalization import LlamaRMSNorm
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: nn.Module = LlamaRMSNorm,
enable_flash_attn: bool = False,
rope=None,
qk_norm_legacy: bool = False,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.enable_flash_attn = enable_flash_attn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.qk_norm_legacy = qk_norm_legacy
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.rope = False
if rope is not None:
self.rope = True
self.rotary_emb = rope
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
# flash attn is not memory efficient for small sequences, this is empirical
enable_flash_attn = self.enable_flash_attn and (N > B)
qkv = self.qkv(x)
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
if self.qk_norm_legacy:
# WARNING: this may be a bug
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
q, k = self.q_norm(q), self.k_norm(k)
else:
q, k = self.q_norm(q), self.k_norm(k)
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
if enable_flash_attn:
from flash_attn import flash_attn_func
# (B, #heads, N, #dim) -> (B, N, #heads, #dim)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
x = flash_attn_func(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
softmax_scale=self.scale,
)
else:
dtype = q.dtype
q = q * self.scale
attn = q @ k.transpose(-2, -1) # translate attn to float32
attn = attn.to(torch.float32)
attn = attn.softmax(dim=-1)
attn = attn.to(dtype) # cast back attn to original dtype
attn = self.attn_drop(attn)
x = attn @ v
x_output_shape = (B, N, C)
if not enable_flash_attn:
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model * 2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
attn_bias = None
# TODO: support torch computation
import xformers.ops
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x