Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from videosys.models.modules.normalization import LlamaRMSNorm | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
qk_norm: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
norm_layer: nn.Module = LlamaRMSNorm, | |
enable_flash_attn: bool = False, | |
rope=None, | |
qk_norm_legacy: bool = False, | |
) -> None: | |
super().__init__() | |
assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
self.enable_flash_attn = enable_flash_attn | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.qk_norm_legacy = qk_norm_legacy | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.rope = False | |
if rope is not None: | |
self.rope = True | |
self.rotary_emb = rope | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, N, C = x.shape | |
# flash attn is not memory efficient for small sequences, this is empirical | |
enable_flash_attn = self.enable_flash_attn and (N > B) | |
qkv = self.qkv(x) | |
qkv_shape = (B, N, 3, self.num_heads, self.head_dim) | |
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) | |
if self.qk_norm_legacy: | |
# WARNING: this may be a bug | |
if self.rope: | |
q = self.rotary_emb(q) | |
k = self.rotary_emb(k) | |
q, k = self.q_norm(q), self.k_norm(k) | |
else: | |
q, k = self.q_norm(q), self.k_norm(k) | |
if self.rope: | |
q = self.rotary_emb(q) | |
k = self.rotary_emb(k) | |
if enable_flash_attn: | |
from flash_attn import flash_attn_func | |
# (B, #heads, N, #dim) -> (B, N, #heads, #dim) | |
q = q.permute(0, 2, 1, 3) | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
x = flash_attn_func( | |
q, | |
k, | |
v, | |
dropout_p=self.attn_drop.p if self.training else 0.0, | |
softmax_scale=self.scale, | |
) | |
else: | |
dtype = q.dtype | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) # translate attn to float32 | |
attn = attn.to(torch.float32) | |
attn = attn.softmax(dim=-1) | |
attn = attn.to(dtype) # cast back attn to original dtype | |
attn = self.attn_drop(attn) | |
x = attn @ v | |
x_output_shape = (B, N, C) | |
if not enable_flash_attn: | |
x = x.transpose(1, 2) | |
x = x.reshape(x_output_shape) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MultiHeadCrossAttention(nn.Module): | |
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): | |
super(MultiHeadCrossAttention, self).__init__() | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
self.d_model = d_model | |
self.num_heads = num_heads | |
self.head_dim = d_model // num_heads | |
self.q_linear = nn.Linear(d_model, d_model) | |
self.kv_linear = nn.Linear(d_model, d_model * 2) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(d_model, d_model) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, cond, mask=None): | |
# query/value: img tokens; key: condition; mask: if padding tokens | |
B, N, C = x.shape | |
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) | |
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) | |
k, v = kv.unbind(2) | |
attn_bias = None | |
# TODO: support torch computation | |
import xformers.ops | |
if mask is not None: | |
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) | |
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) | |
x = x.view(B, -1, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |