Spaces:
Sleeping
Sleeping
bertugmirasyedi
commited on
Commit
•
f9baad9
1
Parent(s):
079594f
Divided singular endpoint for each function.
Browse files- .DS_Store +0 -0
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +192 -90
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
__pycache__/app.cpython-310.pyc
CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from fastapi.
|
|
|
4 |
|
5 |
# Define the FastAPI app
|
6 |
app = FastAPI(docs_url="/")
|
@@ -14,16 +15,18 @@ app.add_middleware(
|
|
14 |
allow_headers=["*"],
|
15 |
)
|
16 |
|
|
|
|
|
17 |
|
18 |
@app.get("/search")
|
19 |
-
def search(
|
20 |
query: str,
|
21 |
-
classification: bool = True,
|
22 |
-
summarization: bool = True,
|
23 |
-
similarity: bool = False,
|
24 |
add_chatgpt_results: bool = False,
|
25 |
n_results: int = 10,
|
26 |
):
|
|
|
|
|
|
|
27 |
import time
|
28 |
import requests
|
29 |
|
@@ -42,7 +45,12 @@ def search(
|
|
42 |
"""
|
43 |
# Set the API endpoint and query parameters
|
44 |
url = "https://www.googleapis.com/books/v1/volumes"
|
45 |
-
params = {
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Send a GET request to the API with the specified parameters
|
48 |
response = requests.get(url, params=params)
|
@@ -132,32 +140,41 @@ def search(
|
|
132 |
images = []
|
133 |
|
134 |
# Get the titles, descriptions, and publishers and append them to the lists
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
images.append(
|
157 |
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
158 |
)
|
159 |
|
160 |
-
|
161 |
|
162 |
# Run the openalex_search function
|
163 |
(
|
@@ -192,8 +209,6 @@ def search(
|
|
192 |
descriptions = []
|
193 |
images = []
|
194 |
|
195 |
-
# Set the OpenAI API key
|
196 |
-
openai.api_key = "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"
|
197 |
# Set the OpenAI API key
|
198 |
openai.api_key = "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"
|
199 |
|
@@ -276,85 +291,172 @@ def search(
|
|
276 |
third_checkpoint = time.time()
|
277 |
third_checkpoint_time = int(third_checkpoint - second_checkpoint)
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
# Combine title, description, and publisher into a single string
|
280 |
combined_data = [
|
281 |
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
|
282 |
for title, description, publisher in zip(titles, descriptions, publishers)
|
283 |
]
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
)
|
296 |
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
-
|
301 |
-
for i in range(len(combined_data)):
|
302 |
-
# Get the embedding for the ith book
|
303 |
-
current_embedding = book_embeddings[i]
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
)
|
|
|
|
|
|
|
309 |
|
310 |
-
|
311 |
-
similar_books.append(
|
312 |
-
{
|
313 |
-
"sorted_by_similarity": similarity_sorted[0][1:],
|
314 |
-
}
|
315 |
-
)
|
316 |
|
317 |
-
return similar_books
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
pipeline,
|
327 |
-
)
|
328 |
-
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
329 |
-
from optimum.bettertransformer import BetterTransformer
|
330 |
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
|
335 |
-
model = BetterTransformer.transform(model)
|
336 |
-
elif runtime == "onnxruntime":
|
337 |
-
tokenizer = AutoTokenizer.from_pretrained("optimum/t5-small")
|
338 |
-
model = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
)
|
348 |
|
349 |
-
#
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
-
|
358 |
|
359 |
def classify(combined_data, runtime="normal"):
|
360 |
"""
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import StreamingResponse
|
4 |
+
from fastapi.encoders import jsonable_encoder
|
5 |
|
6 |
# Define the FastAPI app
|
7 |
app = FastAPI(docs_url="/")
|
|
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
+
key = "AIzaSyCEiSxvAfXHAXNE2Q5b95vBpwjlbjl5GO8"
|
19 |
+
|
20 |
|
21 |
@app.get("/search")
|
22 |
+
async def search(
|
23 |
query: str,
|
|
|
|
|
|
|
24 |
add_chatgpt_results: bool = False,
|
25 |
n_results: int = 10,
|
26 |
):
|
27 |
+
"""
|
28 |
+
Get the results from the Google Books API, OpenAlex, and optionally OpenAI.
|
29 |
+
"""
|
30 |
import time
|
31 |
import requests
|
32 |
|
|
|
45 |
"""
|
46 |
# Set the API endpoint and query parameters
|
47 |
url = "https://www.googleapis.com/books/v1/volumes"
|
48 |
+
params = {
|
49 |
+
"q": str(query),
|
50 |
+
"printType": "books",
|
51 |
+
"maxResults": n_results,
|
52 |
+
"key": key,
|
53 |
+
}
|
54 |
|
55 |
# Send a GET request to the API with the specified parameters
|
56 |
response = requests.get(url, params=params)
|
|
|
140 |
images = []
|
141 |
|
142 |
# Get the titles, descriptions, and publishers and append them to the lists
|
143 |
+
try:
|
144 |
+
for result in openalex_results[0]:
|
145 |
+
try:
|
146 |
+
titles.append(result["title"])
|
147 |
+
except KeyError:
|
148 |
+
titles.append("Null")
|
149 |
+
|
150 |
+
try:
|
151 |
+
descriptions.append(result["abstract"])
|
152 |
+
except KeyError:
|
153 |
+
descriptions.append("Null")
|
154 |
+
|
155 |
+
try:
|
156 |
+
publishers.append(result["host_venue"]["publisher"])
|
157 |
+
except KeyError:
|
158 |
+
publishers.append("Null")
|
159 |
+
|
160 |
+
try:
|
161 |
+
authors.append(result["authorships"][0]["author"]["display_name"])
|
162 |
+
except KeyError:
|
163 |
+
authors.append("Null")
|
164 |
|
165 |
+
images.append(
|
166 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
167 |
+
)
|
168 |
+
except IndexError:
|
169 |
+
titles.append("Null")
|
170 |
+
descriptions.append("Null")
|
171 |
+
publishers.append("Null")
|
172 |
+
authors.append("Null")
|
173 |
images.append(
|
174 |
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
175 |
)
|
176 |
|
177 |
+
return titles, authors, publishers, descriptions, images
|
178 |
|
179 |
# Run the openalex_search function
|
180 |
(
|
|
|
209 |
descriptions = []
|
210 |
images = []
|
211 |
|
|
|
|
|
212 |
# Set the OpenAI API key
|
213 |
openai.api_key = "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"
|
214 |
|
|
|
291 |
third_checkpoint = time.time()
|
292 |
third_checkpoint_time = int(third_checkpoint - second_checkpoint)
|
293 |
|
294 |
+
results = [
|
295 |
+
{
|
296 |
+
"title": title,
|
297 |
+
"author": author,
|
298 |
+
"publisher": publisher,
|
299 |
+
"description": description,
|
300 |
+
"image": image,
|
301 |
+
}
|
302 |
+
for title, author, publisher, description, image in zip(
|
303 |
+
titles, authors, publishers, descriptions, images
|
304 |
+
)
|
305 |
+
]
|
306 |
+
|
307 |
+
response = {"results": results}
|
308 |
+
|
309 |
+
return response
|
310 |
+
|
311 |
+
|
312 |
+
@app.post("/classify")
|
313 |
+
async def classify(data: dict, runtime: str = "normal"):
|
314 |
+
"""
|
315 |
+
Create classifier pipeline and return the results.
|
316 |
+
"""
|
317 |
+
titles = [book["title"] for book in data["results"]]
|
318 |
+
descriptions = [book["description"] for book in data["results"]]
|
319 |
+
publishers = [book["publisher"] for book in data["results"]]
|
320 |
+
|
321 |
# Combine title, description, and publisher into a single string
|
322 |
combined_data = [
|
323 |
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
|
324 |
for title, description, publisher in zip(titles, descriptions, publishers)
|
325 |
]
|
326 |
|
327 |
+
from transformers import (
|
328 |
+
AutoTokenizer,
|
329 |
+
AutoModelForSequenceClassification,
|
330 |
+
pipeline,
|
331 |
+
)
|
332 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
333 |
+
from optimum.bettertransformer import BetterTransformer
|
334 |
+
|
335 |
+
if runtime == "normal":
|
336 |
+
# Define the zero-shot classifier
|
337 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
338 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
339 |
+
)
|
340 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
341 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
342 |
+
)
|
343 |
+
elif runtime == "onnxruntime":
|
344 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
345 |
+
"optimum/distilbert-base-uncased-mnli"
|
346 |
+
)
|
347 |
+
model = ORTModelForSequenceClassification.from_pretrained(
|
348 |
+
"optimum/distilbert-base-uncased-mnli"
|
349 |
)
|
350 |
|
351 |
+
classifier_pipe = pipeline(
|
352 |
+
"zero-shot-classification",
|
353 |
+
model=model,
|
354 |
+
tokenizer=tokenizer,
|
355 |
+
hypothesis_template="This book is {}.",
|
356 |
+
batch_size=1,
|
357 |
+
device=-1,
|
358 |
+
multi_label=False,
|
359 |
+
)
|
360 |
+
|
361 |
+
# Define the candidate labels
|
362 |
+
level = [
|
363 |
+
"Introductory",
|
364 |
+
"Advanced",
|
365 |
+
]
|
366 |
|
367 |
+
audience = ["Academic", "Not Academic", "Manual"]
|
|
|
|
|
|
|
368 |
|
369 |
+
classes = [
|
370 |
+
{
|
371 |
+
"audience": classifier_pipe(doc, audience)["labels"][0],
|
372 |
+
"level": classifier_pipe(doc, level)["scores"][0],
|
373 |
+
}
|
374 |
+
for doc in combined_data
|
375 |
+
]
|
376 |
|
377 |
+
return classes
|
|
|
|
|
|
|
|
|
|
|
378 |
|
|
|
379 |
|
380 |
+
@app.post("/find_similar")
|
381 |
+
async def find_similar(data: dict, runtime: str = "normal", top_k: int = 5):
|
382 |
+
"""
|
383 |
+
Calculate the similarity between the books and return the top_k results.
|
384 |
+
"""
|
385 |
+
from sentence_transformers import SentenceTransformer
|
386 |
+
from sentence_transformers import util
|
|
|
|
|
|
|
|
|
387 |
|
388 |
+
titles = [book["title"] for book in data["results"]]
|
389 |
+
descriptions = [book["description"] for book in data["results"]]
|
390 |
+
publishers = [book["publisher"] for book in data["results"]]
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
+
# Combine title, description, and publisher into a single string
|
393 |
+
combined_data = [
|
394 |
+
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
|
395 |
+
for title, description, publisher in zip(titles, descriptions, publishers)
|
396 |
+
]
|
397 |
+
|
398 |
+
sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
|
399 |
+
book_embeddings = sentence_transformer.encode(combined_data, convert_to_tensor=True)
|
400 |
+
|
401 |
+
# Make sure that the top_k value is not greater than the number of books
|
402 |
+
top_k = len(combined_data) if top_k > len(combined_data) else top_k
|
403 |
+
|
404 |
+
similar_books = []
|
405 |
+
for i in range(len(combined_data)):
|
406 |
+
# Get the embedding for the ith book
|
407 |
+
current_embedding = book_embeddings[i]
|
408 |
+
|
409 |
+
# Calculate the similarity between the ith book and the rest of the books
|
410 |
+
similarity_sorted = util.semantic_search(
|
411 |
+
current_embedding, book_embeddings, top_k=top_k
|
412 |
)
|
413 |
|
414 |
+
# Append the results to the list
|
415 |
+
similar_books.append(
|
416 |
+
{
|
417 |
+
"sorted_by_similarity": similarity_sorted[0][1:],
|
418 |
+
}
|
419 |
+
)
|
420 |
+
|
421 |
+
response = {"results": similar_books}
|
422 |
+
|
423 |
+
return response
|
424 |
+
|
425 |
+
|
426 |
+
@app.post("/summarize")
|
427 |
+
async def summarize(descriptions: list, runtime="normal"):
|
428 |
+
"""
|
429 |
+
Summarize the descriptions and return the results.
|
430 |
+
"""
|
431 |
+
from transformers import (
|
432 |
+
AutoTokenizer,
|
433 |
+
AutoModelForSeq2SeqLM,
|
434 |
+
pipeline,
|
435 |
+
)
|
436 |
+
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
437 |
+
from optimum.bettertransformer import BetterTransformer
|
438 |
+
|
439 |
+
# Define the summarizer model and tokenizer
|
440 |
+
if runtime == "normal":
|
441 |
+
tokenizer = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
|
442 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
|
443 |
+
model = BetterTransformer.transform(model)
|
444 |
+
elif runtime == "onnxruntime":
|
445 |
+
tokenizer = AutoTokenizer.from_pretrained("optimum/t5-small")
|
446 |
+
model = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
|
447 |
+
|
448 |
+
# Create the summarizer pipeline
|
449 |
+
summarizer_pipe = pipeline("summarization", model=model, tokenizer=tokenizer)
|
450 |
+
|
451 |
+
# Summarize the descriptions
|
452 |
+
summaries = [
|
453 |
+
summarizer_pipe(description)
|
454 |
+
if (len(description) > 0 and description != "Null")
|
455 |
+
else [{"summary_text": "No summary text is available."}]
|
456 |
+
for description in descriptions
|
457 |
+
]
|
458 |
|
459 |
+
return summaries
|
460 |
|
461 |
def classify(combined_data, runtime="normal"):
|
462 |
"""
|