import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "Xception.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_pokemon(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] # Predict prediction = model.predict(image) # Because the output layer was dense(0) without an activation function, we need to apply sigmoid to get the probability # we could also change the output layer to dense(1, activation='sigmoid') prediction = np.round(prediction, 2) # Separate the probabilities for each class P_aloevera = prediction[0][0] # Probability for class 'abra' P_curcuma = prediction[0][1] # Probability for class 'beedrill' p_guava = prediction[0][2] # Probability for class 'sandshrew' return {'aloevera': P_aloevera, 'curcuma': P_curcuma, 'guava': p_guava} # Create the Gradio interface input_image = gr.Image() iface = gr.Interface( fn=predict_pokemon, inputs=input_image, outputs=gr.Label(), examples=["images/aloevera0.jpg", "images/curcuma51.jpg", "images/guava10.jpg"], description="A simple mlp classification model for image classification using the mnist dataset.") iface.launch(share=True)