Update app.py
Browse files
app.py
CHANGED
@@ -1,164 +1,205 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
)
|
23 |
-
|
24 |
-
# Combined layers
|
25 |
-
self.combined = nn.Sequential(
|
26 |
-
nn.Linear(512, 256),
|
27 |
-
nn.ReLU(),
|
28 |
-
nn.Dropout(0.5),
|
29 |
-
nn.Linear(256, num_models)
|
30 |
-
)
|
31 |
-
|
32 |
-
def forward(self, image, text_features):
|
33 |
-
# Process image
|
34 |
-
img_features = self.cnn(image)
|
35 |
-
|
36 |
-
# Process text
|
37 |
-
text_features = self.text_mlp(text_features)
|
38 |
-
|
39 |
-
# Combine features
|
40 |
-
combined = torch.cat((img_features, text_features), dim=1)
|
41 |
-
|
42 |
-
# Final prediction
|
43 |
-
output = self.combined(combined)
|
44 |
-
return output
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
def
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
def
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
<style>
|
92 |
-
.model-gallery {
|
93 |
-
display: grid;
|
94 |
-
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
|
95 |
-
gap: 20px;
|
96 |
-
padding: 20px;
|
97 |
-
}
|
98 |
-
.model-card {
|
99 |
-
border: 1px solid #ddd;
|
100 |
-
border-radius: 8px;
|
101 |
-
overflow: hidden;
|
102 |
-
background: white;
|
103 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
104 |
-
}
|
105 |
-
.model-img {
|
106 |
-
width: 100%;
|
107 |
-
height: 200px;
|
108 |
-
object-fit: cover;
|
109 |
-
}
|
110 |
-
.model-info {
|
111 |
-
padding: 15px;
|
112 |
-
}
|
113 |
-
.model-name {
|
114 |
-
color: #2563eb;
|
115 |
-
text-decoration: none;
|
116 |
-
font-weight: bold;
|
117 |
-
font-size: 1.1em;
|
118 |
-
margin-bottom: 8px;
|
119 |
-
display: block;
|
120 |
-
}
|
121 |
-
.model-name:hover {
|
122 |
-
text-decoration: underline;
|
123 |
-
}
|
124 |
-
.distance {
|
125 |
-
color: #666;
|
126 |
-
font-size: 0.9em;
|
127 |
-
}
|
128 |
-
</style>
|
129 |
-
<div class="model-gallery">
|
130 |
-
"""
|
131 |
-
|
132 |
-
# Generate cards for each model
|
133 |
-
for idx, (score, model_idx) in enumerate(zip(top5_prob[0], top5_indices[0])):
|
134 |
-
model_name = predict_image.model_names[model_idx.item()]
|
135 |
-
distance = calculate_euclidean_distance(img_features[0],
|
136 |
-
torch.randn(512).numpy()) # Placeholder for actual features
|
137 |
-
|
138 |
-
civitai_url = f"https://civitai.com/search/models?sortBy=models_v9&query={model_name}"
|
139 |
-
|
140 |
-
html_output += f"""
|
141 |
-
<div class="model-card">
|
142 |
-
<img class="model-img" src="data:image/svg+xml,<svg xmlns='http://www.w3.org/2000/svg' width='250' height='200' viewBox='0 0 250 200'><rect width='100%' height='100%' fill='%23f0f0f0'/><text x='50%' y='50%' dominant-baseline='middle' text-anchor='middle' font-family='Arial' font-size='16' fill='%23666'>Model Preview</text></svg>" alt="{model_name}">
|
143 |
-
<div class="model-info">
|
144 |
-
<a href="{civitai_url}" target="_blank" class="model-name">{model_name}</a>
|
145 |
-
<div class="distance">Euclidean Distance: {distance:.4f}</div>
|
146 |
-
</div>
|
147 |
-
</div>
|
148 |
-
"""
|
149 |
-
|
150 |
-
html_output += "</div>"
|
151 |
-
|
152 |
-
return html_output
|
153 |
|
154 |
-
# Gradio
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from tqdm import tqdm
|
4 |
+
from datasets import load_dataset
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
8 |
+
from tensorflow.keras.preprocessing import image
|
9 |
+
from tensorflow.keras.layers import Dense, Input, Concatenate, Embedding, Flatten
|
10 |
+
from tensorflow.keras.models import Model
|
11 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
12 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
13 |
+
from sklearn.preprocessing import LabelEncoder
|
14 |
+
import joblib
|
15 |
+
from PIL import UnidentifiedImageError, Image
|
16 |
import gradio as gr
|
|
|
17 |
|
18 |
+
# Constants
|
19 |
+
MAX_TEXT_LENGTH = 200
|
20 |
+
EMBEDDING_DIM = 100
|
21 |
+
IMAGE_SIZE = 224
|
22 |
+
BATCH_SIZE = 32
|
23 |
+
|
24 |
+
def load_and_preprocess_data(subset_size=2700):
|
25 |
+
# Load dataset
|
26 |
+
dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k")
|
27 |
+
dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size))
|
28 |
+
|
29 |
+
# Filter out NSFW content
|
30 |
+
dataset_subset = dataset_subset.filter(lambda x: not x['nsfw'])
|
31 |
+
|
32 |
+
return dataset_subset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
def process_text_data(dataset_subset):
|
35 |
+
# Combine prompt and negative prompt
|
36 |
+
text_data = [f"{sample['prompt']} {sample['negativePrompt']}" for sample in dataset_subset]
|
37 |
+
|
38 |
+
# Tokenize text
|
39 |
+
tokenizer = Tokenizer()
|
40 |
+
tokenizer.fit_on_texts(text_data)
|
41 |
+
sequences = tokenizer.texts_to_sequences(text_data)
|
42 |
+
text_data_padded = pad_sequences(sequences, maxlen=MAX_TEXT_LENGTH)
|
43 |
+
|
44 |
+
return text_data_padded, tokenizer
|
45 |
+
|
46 |
+
def process_image_data(dataset_subset):
|
47 |
+
image_dir = 'civitai_images'
|
48 |
+
os.makedirs(image_dir, exist_ok=True)
|
49 |
+
|
50 |
+
image_data = []
|
51 |
+
valid_indices = []
|
52 |
+
|
53 |
+
for idx, sample in enumerate(tqdm(dataset_subset)):
|
54 |
+
img_url = sample['url']
|
55 |
+
img_path = os.path.join(image_dir, os.path.basename(img_url))
|
56 |
|
57 |
+
try:
|
58 |
+
# Download and save image
|
59 |
+
response = requests.get(img_url)
|
60 |
+
response.raise_for_status()
|
61 |
+
|
62 |
+
if 'image' not in response.headers['Content-Type']:
|
63 |
+
continue
|
64 |
+
|
65 |
+
with open(img_path, 'wb') as f:
|
66 |
+
f.write(response.content)
|
67 |
+
|
68 |
+
# Load and preprocess image
|
69 |
+
img = image.load_img(img_path, target_size=(IMAGE_SIZE, IMAGE_SIZE))
|
70 |
+
img_array = image.img_to_array(img)
|
71 |
+
img_array = preprocess_input(img_array)
|
72 |
+
|
73 |
+
image_data.append(img_array)
|
74 |
+
valid_indices.append(idx)
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error processing image {img_url}: {e}")
|
78 |
+
continue
|
79 |
+
|
80 |
+
return np.array(image_data), valid_indices
|
81 |
|
82 |
+
def create_multimodal_model(num_words, num_classes):
|
83 |
+
# Image input branch (CNN)
|
84 |
+
image_input = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3))
|
85 |
+
cnn_base = ResNet50(weights='imagenet', include_top=False, pooling='avg')
|
86 |
+
cnn_features = cnn_base(image_input)
|
87 |
+
|
88 |
+
# Text input branch (MLP)
|
89 |
+
text_input = Input(shape=(MAX_TEXT_LENGTH,))
|
90 |
+
embedding_layer = Embedding(num_words, EMBEDDING_DIM)(text_input)
|
91 |
+
flatten_text = Flatten()(embedding_layer)
|
92 |
+
text_features = Dense(256, activation='relu')(flatten_text)
|
93 |
+
|
94 |
+
# Combine features
|
95 |
+
combined = Concatenate()([cnn_features, text_features])
|
96 |
+
|
97 |
+
# Fully connected layers
|
98 |
+
x = Dense(512, activation='relu')(combined)
|
99 |
+
x = Dense(256, activation='relu')(x)
|
100 |
+
output = Dense(num_classes, activation='softmax')(x)
|
101 |
+
|
102 |
+
model = Model(inputs=[image_input, text_input], outputs=output)
|
103 |
+
return model
|
104 |
|
105 |
+
def train_model():
|
106 |
+
# Load and preprocess data
|
107 |
+
dataset_subset = load_and_preprocess_data()
|
108 |
+
|
109 |
+
# Process text data
|
110 |
+
text_data_padded, tokenizer = process_text_data(dataset_subset)
|
111 |
+
|
112 |
+
# Process image data
|
113 |
+
image_data, valid_indices = process_image_data(dataset_subset)
|
114 |
+
|
115 |
+
# Get valid text data and labels
|
116 |
+
text_data_padded = text_data_padded[valid_indices]
|
117 |
+
model_names = [dataset_subset[i]['Model'] for i in valid_indices]
|
118 |
+
|
119 |
+
# Encode labels
|
120 |
+
label_encoder = LabelEncoder()
|
121 |
+
encoded_labels = label_encoder.fit_transform(model_names)
|
122 |
+
|
123 |
+
# Create and compile model
|
124 |
+
model = create_multimodal_model(
|
125 |
+
num_words=len(tokenizer.word_index) + 1,
|
126 |
+
num_classes=len(label_encoder.classes_)
|
127 |
+
)
|
128 |
+
|
129 |
+
model.compile(
|
130 |
+
optimizer='adam',
|
131 |
+
loss='sparse_categorical_crossentropy',
|
132 |
+
metrics=['accuracy']
|
133 |
+
)
|
134 |
+
|
135 |
+
# Train model
|
136 |
+
history = model.fit(
|
137 |
+
[image_data, text_data_padded],
|
138 |
+
encoded_labels,
|
139 |
+
batch_size=BATCH_SIZE,
|
140 |
+
epochs=10,
|
141 |
+
validation_split=0.2
|
142 |
+
)
|
143 |
+
|
144 |
+
# Save models and encoders
|
145 |
+
model.save('multimodal_model')
|
146 |
+
joblib.dump(tokenizer, 'tokenizer.pkl')
|
147 |
+
joblib.dump(label_encoder, 'label_encoder.pkl')
|
148 |
+
|
149 |
+
return model, tokenizer, label_encoder
|
150 |
|
151 |
+
def get_recommendations(image_input, text_input, model, tokenizer, label_encoder, top_k=5):
|
152 |
+
# Preprocess image
|
153 |
+
img_array = image.img_to_array(image_input)
|
154 |
+
img_array = tf.image.resize(img_array, (IMAGE_SIZE, IMAGE_SIZE))
|
155 |
+
img_array = preprocess_input(img_array)
|
156 |
+
img_array = np.expand_dims(img_array, axis=0)
|
157 |
+
|
158 |
+
# Preprocess text
|
159 |
+
text_sequence = tokenizer.texts_to_sequences([text_input])
|
160 |
+
text_padded = pad_sequences(text_sequence, maxlen=MAX_TEXT_LENGTH)
|
161 |
+
|
162 |
+
# Get predictions
|
163 |
+
predictions = model.predict([img_array, text_padded])
|
164 |
+
top_indices = np.argsort(predictions[0])[-top_k:][::-1]
|
165 |
+
|
166 |
+
# Get recommended model names and confidence scores
|
167 |
+
recommendations = [
|
168 |
+
(label_encoder.inverse_transform([idx])[0], predictions[0][idx])
|
169 |
+
for idx in top_indices
|
170 |
+
]
|
171 |
+
|
172 |
+
return recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# Gradio interface
|
175 |
+
def create_gradio_interface():
|
176 |
+
# Load saved models
|
177 |
+
model = tf.keras.models.load_model('multimodal_model')
|
178 |
+
tokenizer = joblib.load('tokenizer.pkl')
|
179 |
+
label_encoder = joblib.load('label_encoder.pkl')
|
180 |
+
|
181 |
+
def predict(img, text):
|
182 |
+
recommendations = get_recommendations(img, text, model, tokenizer, label_encoder)
|
183 |
+
return "\n".join([f"Model: {name}, Confidence: {conf:.2f}" for name, conf in recommendations])
|
184 |
+
|
185 |
+
interface = gr.Interface(
|
186 |
+
fn=predict,
|
187 |
+
inputs=[
|
188 |
+
gr.Image(type="pil", label="Upload Image"),
|
189 |
+
gr.Textbox(label="Enter Prompt")
|
190 |
+
],
|
191 |
+
outputs=gr.Textbox(label="Recommended Models"),
|
192 |
+
title="Multimodal Model Recommendation System",
|
193 |
+
description="Upload an image and enter a prompt to get model recommendations"
|
194 |
+
)
|
195 |
+
|
196 |
+
return interface
|
197 |
|
198 |
+
if __name__ == "__main__":
|
199 |
+
# Train model if not already trained
|
200 |
+
if not os.path.exists('multimodal_model'):
|
201 |
+
model, tokenizer, label_encoder = train_model()
|
202 |
+
|
203 |
+
# Launch Gradio interface
|
204 |
+
interface = create_gradio_interface()
|
205 |
+
interface.launch()
|