Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms, models
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Model Architecture (sama seperti sebelumnya)
|
8 |
+
class ModelRecommender(nn.Module):
|
9 |
+
def __init__(self, num_models, text_embedding_dim=768):
|
10 |
+
super(ModelRecommender, self).__init__()
|
11 |
+
|
12 |
+
# CNN for image processing
|
13 |
+
self.cnn = models.resnet18(pretrained=True)
|
14 |
+
self.cnn.fc = nn.Linear(512, 256)
|
15 |
+
|
16 |
+
# MLP for text processing
|
17 |
+
self.text_mlp = nn.Sequential(
|
18 |
+
nn.Linear(text_embedding_dim, 512),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.Linear(512, 256),
|
21 |
+
nn.ReLU()
|
22 |
+
)
|
23 |
+
|
24 |
+
# Combined layers
|
25 |
+
self.combined = nn.Sequential(
|
26 |
+
nn.Linear(512, 256),
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Dropout(0.5),
|
29 |
+
nn.Linear(256, num_models)
|
30 |
+
)
|
31 |
+
|
32 |
+
def forward(self, image, text_features):
|
33 |
+
# Process image
|
34 |
+
img_features = self.cnn(image)
|
35 |
+
|
36 |
+
# Process text
|
37 |
+
text_features = self.text_mlp(text_features)
|
38 |
+
|
39 |
+
# Combine features
|
40 |
+
combined = torch.cat((img_features, text_features), dim=1)
|
41 |
+
|
42 |
+
# Final prediction
|
43 |
+
output = self.combined(combined)
|
44 |
+
return output
|
45 |
+
|
46 |
+
# Load model dan dataset info
|
47 |
+
def load_model():
|
48 |
+
# Load dataset info
|
49 |
+
dataset_info = torch.load('dataset_info.pth')
|
50 |
+
model_names = dataset_info['model_names']
|
51 |
+
|
52 |
+
# Initialize model
|
53 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
+
model = ModelRecommender(len(model_names))
|
55 |
+
|
56 |
+
# Load model weights
|
57 |
+
checkpoint = torch.load('sd_recommender_model.pth', map_location=device)
|
58 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
59 |
+
model.to(device)
|
60 |
+
model.eval()
|
61 |
+
|
62 |
+
return model, model_names, device
|
63 |
+
|
64 |
+
# Inference function
|
65 |
+
def predict_image(image):
|
66 |
+
# Load model if not loaded
|
67 |
+
if not hasattr(predict_image, "model"):
|
68 |
+
predict_image.model, predict_image.model_names, predict_image.device = load_model()
|
69 |
+
|
70 |
+
# Preprocess image
|
71 |
+
transform = transforms.Compose([
|
72 |
+
transforms.Resize((224, 224)),
|
73 |
+
transforms.ToTensor(),
|
74 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
75 |
+
std=[0.229, 0.224, 0.225])
|
76 |
+
])
|
77 |
+
|
78 |
+
image_tensor = transform(image).unsqueeze(0).to(predict_image.device)
|
79 |
+
dummy_text_features = torch.zeros(1, 768).to(predict_image.device)
|
80 |
+
|
81 |
+
# Get predictions
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs = predict_image.model(image_tensor, dummy_text_features)
|
84 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)
|
85 |
+
top5_prob, top5_indices = torch.topk(probs, 5)
|
86 |
+
|
87 |
+
# Format results
|
88 |
+
results = []
|
89 |
+
for prob, idx in zip(top5_prob[0], top5_indices[0]):
|
90 |
+
model_name = predict_image.model_names[idx.item()]
|
91 |
+
confidence = f"{prob.item():.2%}"
|
92 |
+
results.append(f"Model: {model_name}\nConfidence: {confidence}")
|
93 |
+
|
94 |
+
return "\n\n".join(results)
|
95 |
+
|
96 |
+
# Gradio Interface
|
97 |
+
demo = gr.Interface(
|
98 |
+
fn=predict_image,
|
99 |
+
inputs=gr.Image(type="pil"),
|
100 |
+
outputs=gr.Textbox(label="Model Recommendations"),
|
101 |
+
title="Stable Diffusion Model Recommender",
|
102 |
+
description="Upload an AI-generated image to get model recommendations",
|
103 |
+
examples=[["example1.jpg"], ["example2.jpg"]] # Tambahkan contoh gambar jika ada
|
104 |
+
)
|
105 |
+
|
106 |
+
demo.launch()
|