import os import requests from tqdm import tqdm from datasets import load_dataset import numpy as np import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input from tensorflow.keras.preprocessing import image from tensorflow.keras.layers import Dense, Input, Concatenate, Embedding, Flatten from tensorflow.keras.models import Model from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.preprocessing import LabelEncoder import joblib from PIL import UnidentifiedImageError, Image import gradio as gr # Optimized Constants MAX_TEXT_LENGTH = 100 EMBEDDING_DIM = 50 IMAGE_SIZE = 160 BATCH_SIZE = 64 # Store model examples model_examples = {} def load_and_preprocess_data(subset_size=20000): # Load dataset dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k") dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size)) # Filter out NSFW content dataset_subset = dataset_subset.filter(lambda x: not x['nsfw']) # Store example images for each model for item in dataset_subset: if item['Model'] not in model_examples: model_examples[item['Model']] = item['url'] return dataset_subset def process_text_data(dataset_subset): # Combine prompt and negative prompt without user input text_data = ["default prompt" for _ in dataset_subset] tokenizer = Tokenizer(num_words=10000) tokenizer.fit_on_texts(text_data) sequences = tokenizer.texts_to_sequences(text_data) text_data_padded = pad_sequences(sequences, maxlen=MAX_TEXT_LENGTH) return text_data_padded, tokenizer def download_image(url): try: response = requests.get(url, timeout=5) response.raise_for_status() return Image.open(requests.get(url, stream=True).raw) except: return None def process_image_data(dataset_subset): image_dir = 'civitai_images' os.makedirs(image_dir, exist_ok=True) image_data = [] valid_indices = [] for idx, sample in enumerate(tqdm(dataset_subset)): img_url = sample['url'] img_path = os.path.join(image_dir, os.path.basename(img_url)) try: response = requests.get(img_url, timeout=5) response.raise_for_status() if 'image' not in response.headers['Content-Type']: continue with open(img_path, 'wb') as f: f.write(response.content) img = image.load_img(img_path, target_size=(IMAGE_SIZE, IMAGE_SIZE)) img_array = image.img_to_array(img) img_array = preprocess_input(img_array) image_data.append(img_array) valid_indices.append(idx) except Exception as e: continue return np.array(image_data), valid_indices def create_multimodal_model(num_words, num_classes): image_input = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3)) cnn_base = ResNet50(weights='imagenet', include_top=False, pooling='avg') for layer in cnn_base.layers[:-10]: layer.trainable = False cnn_features = cnn_base(image_input) text_input = Input(shape=(MAX_TEXT_LENGTH,)) embedding_layer = Embedding(num_words, EMBEDDING_DIM)(text_input) flatten_text = Flatten()(embedding_layer) text_features = Dense(128, activation='relu')(flatten_text) combined = Concatenate()([cnn_features, text_features]) x = Dense(256, activation='relu')(combined) output = Dense(num_classes, activation='softmax')(x) model = Model(inputs=[image_input, text_input], outputs=output) return model def train_model(): dataset_subset = load_and_preprocess_data() text_data_padded, tokenizer = process_text_data(dataset_subset) image_data, valid_indices = process_image_data(dataset_subset) text_data_padded = text_data_padded[valid_indices] model_names = [dataset_subset[i]['Model'] for i in valid_indices] label_encoder = LabelEncoder() encoded_labels = label_encoder.fit_transform(model_names) model = create_multimodal_model( num_words=10000, num_classes=len(label_encoder.classes_) ) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( [image_data, text_data_padded], encoded_labels, batch_size=BATCH_SIZE, epochs=3, validation_split=0.2 ) model.save('multimodal_model.keras') joblib.dump(tokenizer, 'tokenizer.pkl') joblib.dump(label_encoder, 'label_encoder.pkl') # Save model examples joblib.dump(model_examples, 'model_examples.pkl') return model, tokenizer, label_encoder def get_recommendations(image_input, model, tokenizer, label_encoder, top_k=5): img_array = image.img_to_array(image_input) img_array = tf.image.resize(img_array, (IMAGE_SIZE, IMAGE_SIZE)) img_array = preprocess_input(img_array) img_array = np.expand_dims(img_array, axis=0) # Use default text input text_sequence = tokenizer.texts_to_sequences(["default prompt"]) text_padded = pad_sequences(text_sequence, maxlen=MAX_TEXT_LENGTH) predictions = model.predict([img_array, text_padded]) top_indices = np.argsort(predictions[0])[-top_k:][::-1] recommendations = [] for idx in top_indices: model_name = label_encoder.inverse_transform([idx])[0] confidence = predictions[0][idx] if model_name in model_examples: example_image = download_image(model_examples[model_name]) if example_image: recommendations.append((model_name, confidence, example_image)) return recommendations def create_gradio_interface(): model = tf.keras.models.load_model('multimodal_model.keras') tokenizer = joblib.load('tokenizer.pkl') label_encoder = joblib.load('label_encoder.pkl') model_examples_data = joblib.load('model_examples.pkl') def predict(img): recommendations = get_recommendations(img, model, tokenizer, label_encoder) result_text = "" result_images = [] for model_name, conf, example_img in recommendations: result_text += f"Model: {model_name}\n" result_images.append(example_img) return [result_text] + result_images outputs = [gr.Textbox(label="Recommended Models")] + [gr.Image(label=f"Example {i+1}") for i in range(5)] interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil", label="Upload Image"), outputs=outputs, title="AI Model Recommendation System", description="Upload an image to get model recommendations with examples" ) return interface if __name__ == "__main__": if not os.path.exists('multimodal_model.keras'): print("Training new model...") model, tokenizer, label_encoder = train_model() print("Training completed!") else: print("Loading existing model...") interface = create_gradio_interface() interface.launch()