Rec_Sys_Flo2 / app.py
bgaspra's picture
Update app.py
c17d729 verified
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import models
import pandas as pd
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset
from sklearn.preprocessing import LabelEncoder
# Load dataset
dataset = load_dataset('thefcraft/civitai-stable-diffusion-337k', split='train[:10000]')
# Text preprocessing function with None handling
def preprocess_text(text, max_length=100):
# Handle None or empty text
if text is None or not isinstance(text, str):
text = ""
# Convert text to lowercase and split into words
words = text.lower().split()
# Truncate or pad to max_length
if len(words) > max_length:
words = words[:max_length]
else:
words.extend([''] * (max_length - len(words)))
return words
class CustomDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
# Filter out None values from Model column
valid_indices = [i for i, model in enumerate(dataset['Model']) if model is not None]
self.valid_dataset = dataset.select(valid_indices)
self.label_encoder = LabelEncoder()
self.labels = self.label_encoder.fit_transform(self.valid_dataset['Model'])
# Create vocabulary from all prompts
self.vocab = set()
for item in self.valid_dataset['prompt']:
try:
self.vocab.update(preprocess_text(item))
except Exception as e:
print(f"Error processing prompt: {e}")
continue
# Remove empty string from vocabulary if present
self.vocab.discard('')
self.vocab = list(self.vocab)
self.word_to_idx = {word: idx for idx, word in enumerate(self.vocab)}
def __len__(self):
return len(self.valid_dataset)
def text_to_vector(self, text):
try:
words = preprocess_text(text)
vector = torch.zeros(len(self.vocab))
for word in words:
if word in self.word_to_idx:
vector[self.word_to_idx[word]] += 1
return vector
except Exception as e:
print(f"Error converting text to vector: {e}")
return torch.zeros(len(self.vocab))
def __getitem__(self, idx):
try:
image = self.transform(self.valid_dataset[idx]['image'])
text_vector = self.text_to_vector(self.valid_dataset[idx]['prompt'])
label = self.labels[idx]
return image, text_vector, label
except Exception as e:
print(f"Error getting item at index {idx}: {e}")
# Return zero tensors as fallback
return (torch.zeros((3, 224, 224)),
torch.zeros(len(self.vocab)),
0)
# Define CNN for image processing
class ImageModel(nn.Module):
def __init__(self):
super(ImageModel, self).__init__()
self.model = models.resnet18(pretrained=True)
self.model.fc = nn.Linear(self.model.fc.in_features, 512)
def forward(self, x):
return self.model(x)
# Define MLP for text processing
class TextMLP(nn.Module):
def __init__(self, vocab_size):
super(TextMLP, self).__init__()
self.layers = nn.Sequential(
nn.Linear(vocab_size, 1024),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 512)
)
def forward(self, x):
return self.layers(x)
# Combined model
class CombinedModel(nn.Module):
def __init__(self, vocab_size, num_classes):
super(CombinedModel, self).__init__()
self.image_model = ImageModel()
self.text_model = TextMLP(vocab_size)
self.fc = nn.Linear(1024, num_classes)
def forward(self, image, text):
image_features = self.image_model(image)
text_features = self.text_model(text)
combined = torch.cat((image_features, text_features), dim=1)
return self.fc(combined)
# Create dataset instance
print("Creating dataset...")
custom_dataset = CustomDataset(dataset)
print(f"Vocabulary size: {len(custom_dataset.vocab)}")
print(f"Number of valid samples: {len(custom_dataset)}")
# Create model
num_classes = len(custom_dataset.label_encoder.classes_)
model = CombinedModel(len(custom_dataset.vocab), num_classes)
def get_recommendations(image):
model.eval()
with torch.no_grad():
# Process input image
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
image_tensor = transform(image).unsqueeze(0)
# Create dummy text vector
dummy_text = torch.zeros((1, len(custom_dataset.vocab)))
# Get model output
output = model(image_tensor, dummy_text)
_, indices = torch.topk(output, 5)
# Get recommended images and their information
recommendations = []
for idx in indices[0]:
try:
recommended_image = custom_dataset.valid_dataset[idx.item()]['image']
model_name = custom_dataset.valid_dataset[idx.item()]['Model']
recommendations.append((recommended_image, f"{model_name}"))
except Exception as e:
print(f"Error getting recommendation for index {idx}: {e}")
continue
return recommendations
# Set up Gradio interface
interface = gr.Interface(
fn=get_recommendations,
inputs=gr.Image(type="pil"),
outputs=gr.Gallery(label="Recommended Images"),
title="Image Recommendation System",
description="Upload an image and get similar images with their model names."
)
# Launch the app
if __name__ == "__main__":
interface.launch()