|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
|
|
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=HF_TOKEN) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
code: str, |
|
): |
|
messages = [{"role": "system", "content": "Tu es un assistant appelé Fabrice"}] |
|
|
|
print(code) |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0] + ' \n' + code}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message + ' \n' + code}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=512, |
|
stream=True, |
|
temperature=0.7, |
|
top_p=0.4, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
with gr.Blocks(analytics_enabled=True) as demo: |
|
code = gr.Code(language="python") |
|
gr.ChatInterface(respond, additional_inputs=code) |
|
|
|
demo.launch() |