File size: 3,569 Bytes
30b7bc6 d19c70c 4dccf1d f50f18c 4dccf1d 30b7bc6 f50f18c 30b7bc6 f50f18c 4dccf1d f50f18c 4dccf1d d19c70c 4dccf1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
import logging
from sqlalchemy import create_engine, Column, Integer, String, DateTime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, Session
from datetime import datetime
import pandas as pd
from datasets import load_dataset
from rating_systems import compute_elo
def is_running_in_space():
return "SPACE_ID" in os.environ
if is_running_in_space():
DATABASE_URL = "sqlite:///./data/hf-votes.db"
else:
DATABASE_URL = "sqlite:///./data/local2.db"
engine = create_engine(DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()
# Database model
class Vote(Base):
__tablename__ = "votes"
id = Column(Integer, primary_key=True, index=True)
image_id = Column(String, index=True)
model_a = Column(String)
model_b = Column(String)
winner = Column(String)
user_id = Column(String, index=True)
fpath_a = Column(String)
fpath_b = Column(String)
timestamp = Column(DateTime, default=datetime.utcnow)
Base.metadata.create_all(bind=engine)
# Dependency for database session
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
def fill_database_once(dataset_name="bgsys/votes_datasets_test2"):
with SessionLocal() as db:
# Check if the database is already filled
if db.query(Vote).first() is None:
dataset = load_dataset(dataset_name)
for record in dataset['train']:
# Ensure the timestamp is a string
timestamp_str = record.get("timestamp", datetime.utcnow().isoformat())
if not isinstance(timestamp_str, str):
timestamp_str = datetime.utcnow().isoformat()
vote_data = {
"image_id": record.get("image_id", ""),
"model_a": record.get("model_a", ""),
"model_b": record.get("model_b", ""),
"winner": record.get("winner", ""),
"user_id": record.get("user_id", ""),
"fpath_a": record.get("fpath_a", ""),
"fpath_b": record.get("fpath_b", ""),
"timestamp": datetime.fromisoformat(timestamp_str)
}
db_vote = Vote(**vote_data)
db.add(db_vote)
db.commit()
logging.info("Database filled with data from Hugging Face dataset: %s", dataset_name)
else:
logging.info("Database already filled, skipping dataset loading.")
def add_vote(vote_data):
with SessionLocal() as db:
db_vote = Vote(**vote_data)
db.add(db_vote)
db.commit()
db.refresh(db_vote)
logging.info("Vote registered with ID: %s, using database: %s", db_vote.id, DATABASE_URL)
return {"id": db_vote.id, "user_id": db_vote.user_id, "timestamp": db_vote.timestamp}
# Function to get all votes
def get_all_votes():
with SessionLocal() as db:
votes = db.query(Vote).all()
return votes
# Function to compute Elo scores
def compute_elo_scores():
with SessionLocal() as db:
votes = db.query(Vote).all()
data = {
"model_a": [vote.model_a for vote in votes],
"model_b": [vote.model_b for vote in votes],
"winner": [vote.winner for vote in votes]
}
df = pd.DataFrame(data)
elo_scores = compute_elo(df)
return elo_scores |