File size: 20,487 Bytes
4dccf1d
f50f18c
 
 
4dccf1d
f50f18c
 
b58cdd5
f50f18c
4dccf1d
f50f18c
 
dc5f6ab
9248120
4dccf1d
f50f18c
 
 
 
 
 
 
30b7bc6
97067cd
 
a5da205
658df6d
4dccf1d
 
 
97067cd
 
 
4dccf1d
97067cd
9248120
 
 
97067cd
a5da205
97067cd
 
 
 
a5da205
97067cd
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
97067cd
 
 
 
 
 
 
 
 
4dccf1d
 
 
 
dc5f6ab
4dccf1d
 
dc5f6ab
4dccf1d
dc5f6ab
4dccf1d
 
 
dc5f6ab
 
 
 
97067cd
dc5f6ab
4dccf1d
dc5f6ab
 
 
 
 
4dccf1d
dc5f6ab
 
97067cd
 
 
 
 
dc5f6ab
 
 
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683fa1b
4dccf1d
d19c70c
4dccf1d
 
 
d19c70c
 
 
 
 
 
 
 
 
 
4dccf1d
 
 
 
 
 
 
 
d19c70c
4dccf1d
 
 
 
b506727
 
 
 
 
 
439f303
b506727
 
439f303
b506727
 
 
 
 
439f303
b506727
 
 
 
 
 
 
 
 
 
 
4dccf1d
a5da205
 
 
 
 
 
4dccf1d
900cd78
 
 
4dccf1d
 
 
 
 
 
900cd78
4dccf1d
 
 
 
d19c70c
4dccf1d
 
 
 
 
 
900cd78
4dccf1d
 
 
a5da205
4dccf1d
a5da205
 
 
4dccf1d
b58cdd5
4dccf1d
 
 
bb26f6a
4dccf1d
 
 
b58cdd5
4dccf1d
 
 
 
d19c70c
 
4dccf1d
 
 
a5da205
 
 
 
 
 
4dccf1d
 
 
 
 
 
900cd78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58cdd5
a5da205
 
b58cdd5
 
900cd78
b58cdd5
 
a5da205
 
b58cdd5
 
900cd78
b58cdd5
 
a5da205
 
b58cdd5
 
900cd78
b58cdd5
 
a5da205
 
 
 
 
 
 
900cd78
a5da205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900cd78
a5da205
 
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58cdd5
4dccf1d
 
b58cdd5
4dccf1d
 
b58cdd5
4dccf1d
 
 
 
 
 
 
 
b506727
b58cdd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b506727
 
 
 
 
 
 
 
 
b58cdd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dccf1d
 
9248120
 
30b7bc6
 
 
 
9248120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5da205
9248120
 
 
 
 
 
 
 
 
 
 
 
 
 
30b7bc6
 
 
 
 
 
 
9248120
4dccf1d
9248120
4dccf1d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import json
import time
import random
import logging
import threading
from pathlib import Path
from datetime import datetime, timedelta

import numpy as np
import gradio as gr
from dotenv import load_dotenv
from datasets import load_dataset
from huggingface_hub import CommitScheduler

from db import (
    compute_elo_scores,
    get_all_votes,
    add_vote,
    is_running_in_space,
    fill_database_once
)

# Load environment variables
load_dotenv()
huggingface_token = os.getenv("HUGGINGFACE_HUB_TOKEN")

# Configure logging
logging.basicConfig(level=logging.INFO)

# Load datasets and initialize database
dataset = load_dataset("bgsys/background-removal-arena-green", split='train')
fill_database_once()

# Directory setup for JSON dataset
JSON_DATASET_DIR = Path("data/json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)

# Initialize CommitScheduler if running in space
commit_scheduler = CommitScheduler(
    repo_id="bgsys/votes_datasets_test2",
    repo_type="dataset",
    folder_path=JSON_DATASET_DIR,
    path_in_repo="data",
    token=huggingface_token
) if is_running_in_space() else None

def fetch_elo_scores():
    """Fetch and log Elo scores."""
    try:
        elo_scores = compute_elo_scores()
        logging.info("Elo scores successfully computed.")
        return elo_scores
    except Exception as e:
        logging.error("Error computing Elo scores: %s", str(e))
        return None

def update_rankings_table():
    """Update and return the rankings table based on Elo scores."""
    elo_scores = fetch_elo_scores() or {}
    default_score = 1000
    rankings = [
        ["Photoroom", int(elo_scores.get("Photoroom", default_score))],
        ["RemoveBG", int(elo_scores.get("RemoveBG", default_score))],
        ["BRIA RMBG 2.0", int(elo_scores.get("BRIA RMBG 2.0", default_score))],
    ]
    rankings.sort(key=lambda x: x[1], reverse=True)
    return rankings

def select_new_image():
    """Select a new image and its segmented versions."""
    max_attempts = 10
    last_image_index = None

    for _ in range(max_attempts):
        available_indices = [i for i in range(len(dataset)) if i != last_image_index]
        
        if not available_indices:
            logging.error("No available images to select from.")
            return None

        random_index = random.choice(available_indices)
        sample = dataset[random_index]
        input_image = sample['original_image']

        segmented_images = [sample.get(key) for key in ['clipdrop_image', 'bria_image', 'photoroom_image', 'removebg_image']]
        segmented_sources = ['Clipdrop', 'BRIA RMBG 2.0', 'Photoroom', 'RemoveBG']
        
        if segmented_images.count(None) > 2:
            logging.error("Not enough segmented images found for: %s. Resampling another image.", sample['original_filename'])
            last_image_index = random_index
            continue

        try:
            selected_indices = random.sample([i for i, img in enumerate(segmented_images) if img is not None], 2)
            model_a_index, model_b_index = selected_indices
            return (
                sample['original_filename'], input_image,
                segmented_images[model_a_index], segmented_images[model_b_index],
                segmented_sources[model_a_index], segmented_sources[model_b_index]
            )
        except Exception as e:
            logging.error("Error processing images: %s. Resampling another image.", str(e))
            last_image_index = random_index

    logging.error("Failed to select a new image after %d attempts.", max_attempts)
    return None

def get_notice_markdown():
    """Generate the notice markdown with dynamic vote count."""
    total_votes = len(get_all_votes())
    return f"""
    # ⚔️  Background Removal Arena: Compare & Test the Best Background Removal Models

    ## 📜 How It Works
    - **Blind Test**: You will see two images with their background removed from two anonymous background removal models (Clipdrop, RemoveBG, Photoroom, BRIA RMBG 2.0).
    - **Vote for the Best**: Choose the best result, if none stand out choose "Tie". 

    ## 📊 Stats
    - **Total #votes**: {total_votes}

    ## 👇 Test now!
    """

def compute_mask_difference(segmented_a, segmented_b):
    """Compute the absolute difference between two image masks, ignoring green background."""
    mask_a = np.asarray(segmented_a)
    mask_b = np.asarray(segmented_b)

    # Define the green background color
    green_background = (0, 255, 0, 255)

    # Create a binary mask where non-green and non-transparent pixels are marked as 1
    mask_a_1d = np.where(
        (mask_a[..., :3] != green_background[:3]).any(axis=-1) & (mask_a[..., 3] != 0), 1, 0
    )
    mask_b_1d = np.where(
        (mask_b[..., :3] != green_background[:3]).any(axis=-1) & (mask_b[..., 3] != 0), 1, 0
    )

    # Compute the absolute difference between the masks
    return np.abs(mask_a_1d - mask_b_1d)

def gradio_interface():
    """Create and return the Gradio interface."""
    with gr.Blocks() as demo:
        gr.Markdown("# Background Removal Arena")
        button_name = "Difference between masks"

        with gr.Tabs() as tabs:
            with gr.Tab("⚔️ Arena (battle)", id=0):
                notice_markdown = gr.Markdown(get_notice_markdown(), elem_id="notice_markdown")
                with gr.Row(equal_height=True):
                    def on_enter_contest(username):
                        feedback_message = f"Thank you, {username or 'anonymous'}! You can see how you rank in the Hall of Fame."
                        logging.info(feedback_message)
                        return feedback_message
                     
                    with gr.Column(scale=2):
                        username_input = gr.Textbox(
                            label="Enter your username (optional)",
                            placeholder="✨ Enter your username (optional)",
                            show_label=False,
                            submit_btn="Enter",
                            interactive=True
                        )

                    with gr.Column(scale=3):
                        feedback_output = gr.Textbox(
                            label="Feedback",
                            interactive=False,
                            show_label=False
                        )

                    username_input.submit(
                        fn=on_enter_contest,
                        inputs=username_input,
                        outputs=feedback_output
                    )

                filename, input_image, segmented_a, segmented_b, model_a_name, model_b_name = select_new_image()
                state_segmented_a = gr.State(segmented_a)
                state_segmented_b = gr.State(segmented_b)
                state_model_a_name = gr.State(model_a_name)
                state_model_b_name = gr.State(model_b_name)
                state_filename = gr.State(filename)

                zoomed_state_a = gr.State(False)
                zoomed_state_b = gr.State(False)

                # Compute the absolute difference between the masks
                mask_difference = compute_mask_difference(segmented_a, segmented_b)

                with gr.Row():
                    image_a_display = gr.Image(
                        value=segmented_a,
                        label="Image",
                        width=500,
                        height=500
                    )
                    input_image_display = gr.AnnotatedImage(
                        value=(input_image, [(mask_difference > 0, button_name)]),
                        label="Input Image",
                        width=500,
                        height=500
                    )
                    image_b_display = gr.Image(
                        value=segmented_b,
                        label="Image",
                        width=500,
                        height=500
                    )
                state_tie = gr.State("Tie")
                with gr.Row():
                    vote_a_button = gr.Button("👈  A is better")
                    vote_tie_button = gr.Button("🤝  Tie")
                    vote_b_button = gr.Button("👉  B is better")

                def vote_for_model(choice, original_filename, model_a_name, model_b_name, user_username):
                    """Submit a vote for a model and return updated images and model names."""
                    logging.info("Voting for model: %s", choice)
                    vote_data = {
                        "image_id": original_filename.value,
                        "model_a": model_a_name.value,
                        "model_b": model_b_name.value,
                        "winner": choice,
                        "user_id": user_username or "anonymous"
                    }

                    try:
                        logging.debug("Adding vote data to the database: %s", vote_data)
                        result = add_vote(vote_data)
                        logging.info("Vote successfully recorded in the database with ID: %s", result["id"])
                    except Exception as e:
                        logging.error("Error recording vote: %s", str(e))

                    new_filename, new_input_image, new_segmented_a, new_segmented_b, new_model_a_name, new_model_b_name = select_new_image()
                    model_a_name.value = new_model_a_name
                    model_b_name.value = new_model_b_name
                    original_filename.value = new_filename
                    state_segmented_a.value = new_segmented_a
                    state_segmented_b.value = new_segmented_b

                    mask_difference = compute_mask_difference(new_segmented_a, new_segmented_b)

                    # Update the notice markdown with the new vote count
                    new_notice_markdown = get_notice_markdown()

                    # Reinitialize zoom states to False
                    zoomed_state_a.value = False
                    zoomed_state_b.value = False

                    return (
                        original_filename.value, 
                        (new_input_image, [(mask_difference, button_name)]), 
                        new_segmented_a,
                        new_segmented_b, 
                        model_a_name.value, 
                        model_b_name.value, 
                        new_notice_markdown, 
                        state_segmented_a.value, 
                        state_segmented_b.value, 
                        zoomed_state_a.value, 
                        zoomed_state_b.value
                    )

                vote_a_button.click(
                    fn=lambda username: vote_for_model("model_a", state_filename, state_model_a_name, state_model_b_name, username),
                    inputs=username_input,
                    outputs=[
                        state_filename, input_image_display, image_a_display, image_b_display, state_model_a_name, state_model_b_name, notice_markdown, state_segmented_a, state_segmented_b, zoomed_state_a, zoomed_state_b
                    ]
                )
                vote_b_button.click(
                    fn=lambda username: vote_for_model("model_b", state_filename, state_model_a_name, state_model_b_name, username),
                    inputs=username_input,
                    outputs=[
                        state_filename, input_image_display, image_a_display, image_b_display, state_model_a_name, state_model_b_name, notice_markdown, state_segmented_a, state_segmented_b, zoomed_state_a, zoomed_state_b
                    ]
                )
                vote_tie_button.click(
                    fn=lambda username: vote_for_model("tie", state_filename, state_model_a_name, state_model_b_name, username),
                    inputs=username_input,
                    outputs=[
                        state_filename, input_image_display, image_a_display, image_b_display, state_model_a_name, state_model_b_name, notice_markdown, state_segmented_a, state_segmented_b, zoomed_state_a, zoomed_state_b
                    ]
                )


                def handle_zoom(image, event: gr.SelectData, zoomed_state, segmented_image):
                    """Toggle between zoomed and original image based on click events."""
                    if zoomed_state:
                        return gr.Image(
                            value=segmented_image,
                            label="Image",
                            width=500,
                            height=500
                        ), False

                    start_row, start_col = event.index[1], event.index[0]
                    zoom_size = max(10, min(image.shape[:2]) // 10)

                    row_start, row_end = max(start_row - zoom_size, 0), min(start_row + zoom_size, image.shape[0])
                    col_start, col_end = max(start_col - zoom_size, 0), min(start_col + zoom_size, image.shape[1])

                    grey_image = np.mean(image, axis=-1, keepdims=True).astype(image.dtype)
                    grey_image = np.repeat(grey_image, image.shape[-1], axis=-1)
                    output_image = grey_image.copy()

                    zoomed_area = image[row_start:row_end, col_start:col_end]
                    upscale_factor = 6
                    zoomed_area_upscaled = np.kron(zoomed_area, np.ones((upscale_factor, upscale_factor, 1)))

                    center_row, center_col = start_row, start_col
                    row_start_upscaled = max(center_row - zoomed_area_upscaled.shape[0] // 2, 0)
                    row_end_upscaled = min(center_row + zoomed_area_upscaled.shape[0] // 2, output_image.shape[0])
                    col_start_upscaled = max(center_col - zoomed_area_upscaled.shape[1] // 2, 0)
                    col_end_upscaled = min(center_col + zoomed_area_upscaled.shape[1] // 2, output_image.shape[1])

                    row_start_zoomed = max(0, -row_start_upscaled)
                    row_end_zoomed = row_start_zoomed + (row_end_upscaled - row_start_upscaled)
                    col_start_zoomed = max(0, -col_start_upscaled)
                    col_end_zoomed = col_start_zoomed + (col_end_upscaled - col_start_upscaled)

                    row_end_zoomed = min(row_end_zoomed, zoomed_area_upscaled.shape[0])
                    col_end_zoomed = min(col_end_zoomed, zoomed_area_upscaled.shape[1])

                    output_image[row_start_upscaled:row_end_upscaled, col_start_upscaled:col_end_upscaled] = \
                        zoomed_area_upscaled[row_start_zoomed:row_end_zoomed, col_start_zoomed:col_end_zoomed]

                    return output_image, True

              
                image_a_display.select(handle_zoom, [image_a_display, zoomed_state_a, state_segmented_a], [image_a_display, zoomed_state_a])
                image_b_display.select(handle_zoom, [image_b_display, zoomed_state_b, state_segmented_b], [image_b_display, zoomed_state_b])
           
            with gr.Tab("🏆 Leaderboard", id=1) as leaderboard_tab:
                rankings_table = gr.Dataframe(
                    headers=["Model", "Ranking"],
                    value=update_rankings_table(),
                    label="Current Model Rankings",
                    column_widths=[180, 60],
                    row_count=4
                )

                leaderboard_tab.select(
                    fn=lambda: update_rankings_table(),
                    outputs=rankings_table
                )

            with gr.Tab("📊 Vote Data", id=2) as vote_data_tab:
                def update_vote_data():
                    votes = get_all_votes()
                    return [[vote.id, vote.image_id, vote.model_a, vote.model_b, vote.winner, vote.user_id, vote.timestamp] for vote in votes]

                vote_table = gr.Dataframe(
                    headers=["ID", "Image ID", "Model A", "Model B", "Winner", "user_id", "Timestamp"],
                    value=update_vote_data(),
                    label="Vote Data",
                    column_widths=[20, 150, 100, 100, 100, 100, 150],
                    row_count=0
                )

                vote_data_tab.select(
                    fn=lambda: update_vote_data(),
                    outputs=vote_table
                )

            with gr.Tab("👥 Hall of Fame", id=3) as user_leaderboard_tab:
                current_time = datetime.now()
                start_of_week = current_time - timedelta(days=current_time.weekday())

                def get_weekly_user_leaderboard():
                    """Get the leaderboard of users with the most votes in the current week, excluding anonymous votes."""
                    votes = get_all_votes()
                    weekly_votes = [
                        vote for vote in votes 
                        if vote.timestamp >= start_of_week 
                        and vote.user_id 
                        and vote.user_id != "anonymous"
                    ]
                    user_vote_count = {}
                    for vote in weekly_votes:
                        user_vote_count[vote.user_id] = user_vote_count.get(vote.user_id, 0) + 1
                    sorted_users = sorted(user_vote_count.items(), key=lambda x: x[1], reverse=True)
                    
                    # Add medals for the top 3 users
                    medals = ["🥇", "🥈", "🥉"]
                    leaderboard = []
                    for index, (user, count) in enumerate(sorted_users):
                        medal = medals[index] if index < len(medals) else ""
                        leaderboard.append([f"{medal} {user}", count])
                    
                    return leaderboard

                user_leaderboard_table = gr.Dataframe(
                    headers=["User", "Votes"],
                    value=get_weekly_user_leaderboard(),
                    label="User Vote Leaderboard (This Week)",
                    column_widths=[150, 100],
                    row_count=0
                )

                leaderboard_info = gr.Markdown(
                    value=f"""
                    This leaderboard shows the ranking of users based on the number of votes they have cast in the current week. The current ranking is based on votes cast from {start_of_week.strftime('%Y-%m-%d')} to {current_time.strftime('%Y-%m-%d')}.
                    It will be updated each week. 
                    """
                )

                user_leaderboard_tab.select(
                    fn=lambda: get_weekly_user_leaderboard(),
                    outputs=user_leaderboard_table
                )

    return demo

def dump_database_to_json():
    """Dump the database to a JSON file and upload it to Hugging Face."""
    if not is_running_in_space():
        logging.info("Not running in Hugging Face Spaces. Skipping database dump.")
        return

    votes = get_all_votes()
    json_data = [
        {
            "id": vote.id,
            "image_id": vote.image_id,
            "model_a": vote.model_a,
            "model_b": vote.model_b,
            "winner": vote.winner,
            "user_id": vote.user_id,
            "timestamp": vote.timestamp.isoformat()
        }
        for vote in votes
    ]

    json_file_path = JSON_DATASET_DIR / "votes.json"
    # Upload to Hugging Face
    with commit_scheduler.lock:
        with json_file_path.open("w") as f:
            json.dump(json_data, f, indent=4)

    logging.info("Database dumped to JSON")

def schedule_dump_database(interval=60):
    """Schedule the database dump to JSON every specified interval in seconds."""
    def run():
        while True:
            logging.info("Starting database dump to JSON.")
            dump_database_to_json()
            logging.info("Database dump completed. Sleeping for %d seconds.", interval)
            time.sleep(interval)

    if is_running_in_space():
        logging.info("Initializing database dump scheduler with interval: %d seconds.", interval)
        thread = threading.Thread(target=run, daemon=True)
        thread.start()
        logging.info("Database dump scheduler started.")
    else:
        logging.info("Not running in Hugging Face Spaces. Database dump scheduler not started.")

if __name__ == "__main__":
    schedule_dump_database()  # Start the periodic database dump
    demo = gradio_interface()
    demo.launch()