File size: 20,487 Bytes
4dccf1d f50f18c 4dccf1d f50f18c b58cdd5 f50f18c 4dccf1d f50f18c dc5f6ab 9248120 4dccf1d f50f18c 30b7bc6 97067cd a5da205 658df6d 4dccf1d 97067cd 4dccf1d 97067cd 9248120 97067cd a5da205 97067cd a5da205 97067cd 4dccf1d 97067cd 4dccf1d dc5f6ab 4dccf1d dc5f6ab 4dccf1d dc5f6ab 4dccf1d dc5f6ab 97067cd dc5f6ab 4dccf1d dc5f6ab 4dccf1d dc5f6ab 97067cd dc5f6ab 4dccf1d 683fa1b 4dccf1d d19c70c 4dccf1d d19c70c 4dccf1d d19c70c 4dccf1d b506727 439f303 b506727 439f303 b506727 439f303 b506727 4dccf1d a5da205 4dccf1d 900cd78 4dccf1d 900cd78 4dccf1d d19c70c 4dccf1d 900cd78 4dccf1d a5da205 4dccf1d a5da205 4dccf1d b58cdd5 4dccf1d bb26f6a 4dccf1d b58cdd5 4dccf1d d19c70c 4dccf1d a5da205 4dccf1d 900cd78 b58cdd5 a5da205 b58cdd5 900cd78 b58cdd5 a5da205 b58cdd5 900cd78 b58cdd5 a5da205 b58cdd5 900cd78 b58cdd5 a5da205 900cd78 a5da205 900cd78 a5da205 4dccf1d b58cdd5 4dccf1d b58cdd5 4dccf1d b58cdd5 4dccf1d b506727 b58cdd5 b506727 b58cdd5 4dccf1d 9248120 30b7bc6 9248120 a5da205 9248120 30b7bc6 9248120 4dccf1d 9248120 4dccf1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import json
import time
import random
import logging
import threading
from pathlib import Path
from datetime import datetime, timedelta
import numpy as np
import gradio as gr
from dotenv import load_dotenv
from datasets import load_dataset
from huggingface_hub import CommitScheduler
from db import (
compute_elo_scores,
get_all_votes,
add_vote,
is_running_in_space,
fill_database_once
)
# Load environment variables
load_dotenv()
huggingface_token = os.getenv("HUGGINGFACE_HUB_TOKEN")
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load datasets and initialize database
dataset = load_dataset("bgsys/background-removal-arena-green", split='train')
fill_database_once()
# Directory setup for JSON dataset
JSON_DATASET_DIR = Path("data/json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
# Initialize CommitScheduler if running in space
commit_scheduler = CommitScheduler(
repo_id="bgsys/votes_datasets_test2",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
token=huggingface_token
) if is_running_in_space() else None
def fetch_elo_scores():
"""Fetch and log Elo scores."""
try:
elo_scores = compute_elo_scores()
logging.info("Elo scores successfully computed.")
return elo_scores
except Exception as e:
logging.error("Error computing Elo scores: %s", str(e))
return None
def update_rankings_table():
"""Update and return the rankings table based on Elo scores."""
elo_scores = fetch_elo_scores() or {}
default_score = 1000
rankings = [
["Photoroom", int(elo_scores.get("Photoroom", default_score))],
["RemoveBG", int(elo_scores.get("RemoveBG", default_score))],
["BRIA RMBG 2.0", int(elo_scores.get("BRIA RMBG 2.0", default_score))],
]
rankings.sort(key=lambda x: x[1], reverse=True)
return rankings
def select_new_image():
"""Select a new image and its segmented versions."""
max_attempts = 10
last_image_index = None
for _ in range(max_attempts):
available_indices = [i for i in range(len(dataset)) if i != last_image_index]
if not available_indices:
logging.error("No available images to select from.")
return None
random_index = random.choice(available_indices)
sample = dataset[random_index]
input_image = sample['original_image']
segmented_images = [sample.get(key) for key in ['clipdrop_image', 'bria_image', 'photoroom_image', 'removebg_image']]
segmented_sources = ['Clipdrop', 'BRIA RMBG 2.0', 'Photoroom', 'RemoveBG']
if segmented_images.count(None) > 2:
logging.error("Not enough segmented images found for: %s. Resampling another image.", sample['original_filename'])
last_image_index = random_index
continue
try:
selected_indices = random.sample([i for i, img in enumerate(segmented_images) if img is not None], 2)
model_a_index, model_b_index = selected_indices
return (
sample['original_filename'], input_image,
segmented_images[model_a_index], segmented_images[model_b_index],
segmented_sources[model_a_index], segmented_sources[model_b_index]
)
except Exception as e:
logging.error("Error processing images: %s. Resampling another image.", str(e))
last_image_index = random_index
logging.error("Failed to select a new image after %d attempts.", max_attempts)
return None
def get_notice_markdown():
"""Generate the notice markdown with dynamic vote count."""
total_votes = len(get_all_votes())
return f"""
# ⚔️ Background Removal Arena: Compare & Test the Best Background Removal Models
## 📜 How It Works
- **Blind Test**: You will see two images with their background removed from two anonymous background removal models (Clipdrop, RemoveBG, Photoroom, BRIA RMBG 2.0).
- **Vote for the Best**: Choose the best result, if none stand out choose "Tie".
## 📊 Stats
- **Total #votes**: {total_votes}
## 👇 Test now!
"""
def compute_mask_difference(segmented_a, segmented_b):
"""Compute the absolute difference between two image masks, ignoring green background."""
mask_a = np.asarray(segmented_a)
mask_b = np.asarray(segmented_b)
# Define the green background color
green_background = (0, 255, 0, 255)
# Create a binary mask where non-green and non-transparent pixels are marked as 1
mask_a_1d = np.where(
(mask_a[..., :3] != green_background[:3]).any(axis=-1) & (mask_a[..., 3] != 0), 1, 0
)
mask_b_1d = np.where(
(mask_b[..., :3] != green_background[:3]).any(axis=-1) & (mask_b[..., 3] != 0), 1, 0
)
# Compute the absolute difference between the masks
return np.abs(mask_a_1d - mask_b_1d)
def gradio_interface():
"""Create and return the Gradio interface."""
with gr.Blocks() as demo:
gr.Markdown("# Background Removal Arena")
button_name = "Difference between masks"
with gr.Tabs() as tabs:
with gr.Tab("⚔️ Arena (battle)", id=0):
notice_markdown = gr.Markdown(get_notice_markdown(), elem_id="notice_markdown")
with gr.Row(equal_height=True):
def on_enter_contest(username):
feedback_message = f"Thank you, {username or 'anonymous'}! You can see how you rank in the Hall of Fame."
logging.info(feedback_message)
return feedback_message
with gr.Column(scale=2):
username_input = gr.Textbox(
label="Enter your username (optional)",
placeholder="✨ Enter your username (optional)",
show_label=False,
submit_btn="Enter",
interactive=True
)
with gr.Column(scale=3):
feedback_output = gr.Textbox(
label="Feedback",
interactive=False,
show_label=False
)
username_input.submit(
fn=on_enter_contest,
inputs=username_input,
outputs=feedback_output
)
filename, input_image, segmented_a, segmented_b, model_a_name, model_b_name = select_new_image()
state_segmented_a = gr.State(segmented_a)
state_segmented_b = gr.State(segmented_b)
state_model_a_name = gr.State(model_a_name)
state_model_b_name = gr.State(model_b_name)
state_filename = gr.State(filename)
zoomed_state_a = gr.State(False)
zoomed_state_b = gr.State(False)
# Compute the absolute difference between the masks
mask_difference = compute_mask_difference(segmented_a, segmented_b)
with gr.Row():
image_a_display = gr.Image(
value=segmented_a,
label="Image",
width=500,
height=500
)
input_image_display = gr.AnnotatedImage(
value=(input_image, [(mask_difference > 0, button_name)]),
label="Input Image",
width=500,
height=500
)
image_b_display = gr.Image(
value=segmented_b,
label="Image",
width=500,
height=500
)
state_tie = gr.State("Tie")
with gr.Row():
vote_a_button = gr.Button("👈 A is better")
vote_tie_button = gr.Button("🤝 Tie")
vote_b_button = gr.Button("👉 B is better")
def vote_for_model(choice, original_filename, model_a_name, model_b_name, user_username):
"""Submit a vote for a model and return updated images and model names."""
logging.info("Voting for model: %s", choice)
vote_data = {
"image_id": original_filename.value,
"model_a": model_a_name.value,
"model_b": model_b_name.value,
"winner": choice,
"user_id": user_username or "anonymous"
}
try:
logging.debug("Adding vote data to the database: %s", vote_data)
result = add_vote(vote_data)
logging.info("Vote successfully recorded in the database with ID: %s", result["id"])
except Exception as e:
logging.error("Error recording vote: %s", str(e))
new_filename, new_input_image, new_segmented_a, new_segmented_b, new_model_a_name, new_model_b_name = select_new_image()
model_a_name.value = new_model_a_name
model_b_name.value = new_model_b_name
original_filename.value = new_filename
state_segmented_a.value = new_segmented_a
state_segmented_b.value = new_segmented_b
mask_difference = compute_mask_difference(new_segmented_a, new_segmented_b)
# Update the notice markdown with the new vote count
new_notice_markdown = get_notice_markdown()
# Reinitialize zoom states to False
zoomed_state_a.value = False
zoomed_state_b.value = False
return (
original_filename.value,
(new_input_image, [(mask_difference, button_name)]),
new_segmented_a,
new_segmented_b,
model_a_name.value,
model_b_name.value,
new_notice_markdown,
state_segmented_a.value,
state_segmented_b.value,
zoomed_state_a.value,
zoomed_state_b.value
)
vote_a_button.click(
fn=lambda username: vote_for_model("model_a", state_filename, state_model_a_name, state_model_b_name, username),
inputs=username_input,
outputs=[
state_filename, input_image_display, image_a_display, image_b_display, state_model_a_name, state_model_b_name, notice_markdown, state_segmented_a, state_segmented_b, zoomed_state_a, zoomed_state_b
]
)
vote_b_button.click(
fn=lambda username: vote_for_model("model_b", state_filename, state_model_a_name, state_model_b_name, username),
inputs=username_input,
outputs=[
state_filename, input_image_display, image_a_display, image_b_display, state_model_a_name, state_model_b_name, notice_markdown, state_segmented_a, state_segmented_b, zoomed_state_a, zoomed_state_b
]
)
vote_tie_button.click(
fn=lambda username: vote_for_model("tie", state_filename, state_model_a_name, state_model_b_name, username),
inputs=username_input,
outputs=[
state_filename, input_image_display, image_a_display, image_b_display, state_model_a_name, state_model_b_name, notice_markdown, state_segmented_a, state_segmented_b, zoomed_state_a, zoomed_state_b
]
)
def handle_zoom(image, event: gr.SelectData, zoomed_state, segmented_image):
"""Toggle between zoomed and original image based on click events."""
if zoomed_state:
return gr.Image(
value=segmented_image,
label="Image",
width=500,
height=500
), False
start_row, start_col = event.index[1], event.index[0]
zoom_size = max(10, min(image.shape[:2]) // 10)
row_start, row_end = max(start_row - zoom_size, 0), min(start_row + zoom_size, image.shape[0])
col_start, col_end = max(start_col - zoom_size, 0), min(start_col + zoom_size, image.shape[1])
grey_image = np.mean(image, axis=-1, keepdims=True).astype(image.dtype)
grey_image = np.repeat(grey_image, image.shape[-1], axis=-1)
output_image = grey_image.copy()
zoomed_area = image[row_start:row_end, col_start:col_end]
upscale_factor = 6
zoomed_area_upscaled = np.kron(zoomed_area, np.ones((upscale_factor, upscale_factor, 1)))
center_row, center_col = start_row, start_col
row_start_upscaled = max(center_row - zoomed_area_upscaled.shape[0] // 2, 0)
row_end_upscaled = min(center_row + zoomed_area_upscaled.shape[0] // 2, output_image.shape[0])
col_start_upscaled = max(center_col - zoomed_area_upscaled.shape[1] // 2, 0)
col_end_upscaled = min(center_col + zoomed_area_upscaled.shape[1] // 2, output_image.shape[1])
row_start_zoomed = max(0, -row_start_upscaled)
row_end_zoomed = row_start_zoomed + (row_end_upscaled - row_start_upscaled)
col_start_zoomed = max(0, -col_start_upscaled)
col_end_zoomed = col_start_zoomed + (col_end_upscaled - col_start_upscaled)
row_end_zoomed = min(row_end_zoomed, zoomed_area_upscaled.shape[0])
col_end_zoomed = min(col_end_zoomed, zoomed_area_upscaled.shape[1])
output_image[row_start_upscaled:row_end_upscaled, col_start_upscaled:col_end_upscaled] = \
zoomed_area_upscaled[row_start_zoomed:row_end_zoomed, col_start_zoomed:col_end_zoomed]
return output_image, True
image_a_display.select(handle_zoom, [image_a_display, zoomed_state_a, state_segmented_a], [image_a_display, zoomed_state_a])
image_b_display.select(handle_zoom, [image_b_display, zoomed_state_b, state_segmented_b], [image_b_display, zoomed_state_b])
with gr.Tab("🏆 Leaderboard", id=1) as leaderboard_tab:
rankings_table = gr.Dataframe(
headers=["Model", "Ranking"],
value=update_rankings_table(),
label="Current Model Rankings",
column_widths=[180, 60],
row_count=4
)
leaderboard_tab.select(
fn=lambda: update_rankings_table(),
outputs=rankings_table
)
with gr.Tab("📊 Vote Data", id=2) as vote_data_tab:
def update_vote_data():
votes = get_all_votes()
return [[vote.id, vote.image_id, vote.model_a, vote.model_b, vote.winner, vote.user_id, vote.timestamp] for vote in votes]
vote_table = gr.Dataframe(
headers=["ID", "Image ID", "Model A", "Model B", "Winner", "user_id", "Timestamp"],
value=update_vote_data(),
label="Vote Data",
column_widths=[20, 150, 100, 100, 100, 100, 150],
row_count=0
)
vote_data_tab.select(
fn=lambda: update_vote_data(),
outputs=vote_table
)
with gr.Tab("👥 Hall of Fame", id=3) as user_leaderboard_tab:
current_time = datetime.now()
start_of_week = current_time - timedelta(days=current_time.weekday())
def get_weekly_user_leaderboard():
"""Get the leaderboard of users with the most votes in the current week, excluding anonymous votes."""
votes = get_all_votes()
weekly_votes = [
vote for vote in votes
if vote.timestamp >= start_of_week
and vote.user_id
and vote.user_id != "anonymous"
]
user_vote_count = {}
for vote in weekly_votes:
user_vote_count[vote.user_id] = user_vote_count.get(vote.user_id, 0) + 1
sorted_users = sorted(user_vote_count.items(), key=lambda x: x[1], reverse=True)
# Add medals for the top 3 users
medals = ["🥇", "🥈", "🥉"]
leaderboard = []
for index, (user, count) in enumerate(sorted_users):
medal = medals[index] if index < len(medals) else ""
leaderboard.append([f"{medal} {user}", count])
return leaderboard
user_leaderboard_table = gr.Dataframe(
headers=["User", "Votes"],
value=get_weekly_user_leaderboard(),
label="User Vote Leaderboard (This Week)",
column_widths=[150, 100],
row_count=0
)
leaderboard_info = gr.Markdown(
value=f"""
This leaderboard shows the ranking of users based on the number of votes they have cast in the current week. The current ranking is based on votes cast from {start_of_week.strftime('%Y-%m-%d')} to {current_time.strftime('%Y-%m-%d')}.
It will be updated each week.
"""
)
user_leaderboard_tab.select(
fn=lambda: get_weekly_user_leaderboard(),
outputs=user_leaderboard_table
)
return demo
def dump_database_to_json():
"""Dump the database to a JSON file and upload it to Hugging Face."""
if not is_running_in_space():
logging.info("Not running in Hugging Face Spaces. Skipping database dump.")
return
votes = get_all_votes()
json_data = [
{
"id": vote.id,
"image_id": vote.image_id,
"model_a": vote.model_a,
"model_b": vote.model_b,
"winner": vote.winner,
"user_id": vote.user_id,
"timestamp": vote.timestamp.isoformat()
}
for vote in votes
]
json_file_path = JSON_DATASET_DIR / "votes.json"
# Upload to Hugging Face
with commit_scheduler.lock:
with json_file_path.open("w") as f:
json.dump(json_data, f, indent=4)
logging.info("Database dumped to JSON")
def schedule_dump_database(interval=60):
"""Schedule the database dump to JSON every specified interval in seconds."""
def run():
while True:
logging.info("Starting database dump to JSON.")
dump_database_to_json()
logging.info("Database dump completed. Sleeping for %d seconds.", interval)
time.sleep(interval)
if is_running_in_space():
logging.info("Initializing database dump scheduler with interval: %d seconds.", interval)
thread = threading.Thread(target=run, daemon=True)
thread.start()
logging.info("Database dump scheduler started.")
else:
logging.info("Not running in Hugging Face Spaces. Database dump scheduler not started.")
if __name__ == "__main__":
schedule_dump_database() # Start the periodic database dump
demo = gradio_interface()
demo.launch() |